GSETT

Conference on Disarmament / Group of Scientific Experts Second Technical Test
 Seismic Parameter and Waveform Data
 April 22 - June 2, 1991

Assembled Data Set 05-001

Distributed by:
Incorporated Research Institutions for Seismology
Data Management Center
1408 NE 45th Street, Suite 201
Seattle, Washington 98105 USA
www.iris.washington.edu

The Group of Scientific Experts Second Technical Test (GSETT-2) was an ambitious experiment in terms of the international nature of its participants, the volume of data collected and exchanged, the analysis procedures followed, and the time schedule under which the experiment took place. In rough numbers, the GSETT-2 archives contain parametric data from 3,000 seismic events as recorded by 60 globally-distributed stations over a 42 -day period from 22 April through 2 June 1991. Evaluation of the success of GSETT-2 by the Group's delegations and working groups is still underway. The data on this two-volume set of CD-ROMs promise to provide a foundation for the continued evaluation of GSETT-2, but also promise to be an important resource for the broader seismic research community.

In this document, we provide an overview of GSETT-2 that aimed at giving potential users of the CD-ROMs who are unfamiliar with the test a perspective on the origins and intent of the data. We review the concepts, operational logistics, analysis procedures, and results. Note that what we provide here is only a very brief summary of the information contained in many documents published by the Group of Scientific Experts and its national delegations. We strongly encourage users to reference these documents for details. Please contact your national GSE delegation (see CONTACTS.DOC file) to request GSE documentation.

1.0 HISTORICAL BACKGROUND

The Ad Hoc Group of Scientific Experts to Consider International Co-operative Measures to Detect and Identify Seismic Events (GSE) was established in 1976 by what is now the Conference on Disarmament. Through many conference reports (starting with the first, CCD/558, 1978), the GSE defined the concepts for an international system of seismic data exchange capable of providing all parties equal access to data useful for monitoring a limited or comprehensive nuclear test-ban treaty. The concepts included a global network of about 50 high-quality seismic stations, capable of supplying both parametric "Level I" data (arrival times, amplitudes, periods, etc.) and digital waveform data ("Level II") to a system of data centers for processing and dissemination according to strict procedures. During the first large-scale test of these concepts in 1984 (the Group of Scientific Experts Technical Test, or GSETT), parameter data were routinely sent to International Data Centers for event location processing. Waveform data were to be available on request, but never exchanged routinely (CD/720, 1986).

Rapid developments in seismic acquisition systems, communications, and computer processing led the GSE to propose an expansion of the global system. In particular, there was a concensus that the routine exchange and processing of seismic waveforms in conjunction with parameter data could significantly improve the efectiveness of the system. A second technical test (called GSETT-2), including several warm-up phases and a full-scale test, was conducted during 1990 - 1991 to evaluate these and other new concepts. The data on the GSETT-2 CD-ROMs are from the full-scale test of GSETT-2, with data collected between 22 April and 2 June 1991.

The GSE system for the full-scale test included National Data Centers (NDC) which collected and forwarded seismic data to four Experimental International Data Centers (EIDC) in Canberra, Moscow, Stockholm, and Washington. The EIDCs followed agreed procedures to produce and dispatch a series of seismic event bulletins with the objective of obtaining a unified final bulletin that represents the best hypotheses of the four. A difficult requirement was that all data centers adhere to a demanding and rigid schedule in which they had to process the data from several "Data Days" simultaneously. Days 0-7 represent the days in the eight-day GSE processing cycle relative to each given data day (Day 0). Instructions for the test, including message formats, processing procedures, and schedules are given in CRP 190/Rev 4, 1990.

On Days $0-1$, the NDCs were responsible for recording seismic data from one or more stations run by their country, then for analyzing these data to detect and identify seismic phases, measure the required parameters or features as specified by CRP 190 (arrival time, amplitude, period, etc.), and, if possible, use national means to locate events. Measured detection parameters, accompanying waveform segments, and event solutions were dispatched via various communications channels (e.g., by direct satellite links to communications nodes, electronic mail, Internet links, etc.) to all four EIDCs in strictly-formatted messages by the end of Day 1.

EIDCs continuously received, parsed, and archived the incoming data. Daily logs of all messages sent and received were exchanged by the EIDCs to assure that their databases were identical. By the end of Day 2 EIDCs computed and dispatched an Initial Event List (IEL) prepared following strict rules from the parameter data by an automatic association program. A primary focus of GSETT-2 was to determine the value of analyzing waveform data in conjunction with seismic parameters for producing an improved seismic bulletin, and the EIDC did this analysis during Days 3-6. EIDCs could request supplemental data from NDCs to better define hypothesized events. A Current Event List (CEL) showing the current state of each EIDC's analyzed bulletin, was exchanged daily as a means of communicating the current thinking of each EIDC on the events of the Data Day. A final CEL was dispatched from each EIDC at the end of Day 6, and these were combined using prescribed rules by the "responsible EIDC" (a rotating assignment) to form the Final Event Bulletin (FEB) for dissemination to all data centers. All parameter and waveform data had to be readily accessible at each data center from Day 0 - 15 . Representative of the demands of the schedule is the fact the an EIDC had to compile and dispatch up to six event lists and bulletins in a single day.

3.0 NDC PROCESSING PROCEDURES

The most important procedures at a GSE National Data Center that pertain to the data on these $C D-R O M s$ are those governing the reporting of seismic waveform and parameter data. Details on these procedures are given in Appendices A and C, respectively, of CRP 190/Rev 4 (1990). Modified excerpts of these appendices are given at the end of this file.

4.0 EIDC PROCESSING PROCEDURES

The most important procedures at a GSE Experimental International Data Center that pertain to the data on these CD-ROMs are those governing the compilation of the Initial Event List (IEL), Current Event List (CEL), and Final Event Bulletin (FEB). Details on these procedures are given in Appendices B, F and J, respectively, of CRP 190/Rev 4 (1990). Modified excerpts of these
appendices are given at the end of this document.

5.0 PRELIMINARY SEISMOLOGICAL RESULTS

GSETT-2 was comprised of 42 data days starting from 22 April 1991 and running through 2 June 1991. The last FEB was scheduled to be dispatched on 9 June 1991. Below, we provide some rough statistics that will be useful for assessing the content of the GSETT-2 CD-ROMs. These statistics are from the Washington EIDC database and are rounded to the nearest one or two significant digits. These statistics will be further refined and presented to greater precision as the GSE evaluation proceeds.

NETWORK
EIDCs 4 data centers
NDCs 35 data centers
Stations 60 stations
arrays 12 stations
1 or 3 component 48 stations
Min and Max Latitude of stations 78S lat. to 77N lat.
Min and Max Longitude of stations 160W lon. to 175E lon.

PHASE ARRIVALS
Number 66,000 phases
\% Associated 39 \%

WAVEFORMS
Segments 85,000 segments
Volume
1.2 Gbytes

EVENTS
Washington CEL (WASCEL directories) 2,700 events
FEB (GSEBULL directories) 3,700 events

Please forward questions and comments on any related subject to:
Dr. Steven Bratt, Mr. David Bonnett, Mr. David Corley
Washington Experimental International Data Center
Center for Seismic Studies
1300 North 17th Street, Suite 1450
Arlington, VA 22209 USA
Telephone: 703-276-7900
Telefax: 703-243-8950
Electronic Mail:
bratt@seismo.css.gov, bonnett@seismo.css.gov, corley@seismo.css.gov

NDC PROCEDURES: WAVEFORM TIME SEGMENTS TRANSMITTED FOR EACH DETECTED SIGNAL
(Excerpt from Appendix A, CRP 190/Rev 4, 1990)
During GSETT-2, short-period waveform time segments will be regularly transmitted by NDCs for each detected seismic signal. The length of these segments will be 120 seconds of vertical component data, starting 30 seconds before a detected arrival. Array stations will send such segments from both the best beam and from one sensor. For local and regional events, the waveform will consist of short-period vertical waveform segments commencing 30 seconds before P and continuing for 30 seconds after the last clearly discernable phase.

The regular transmission of long-period data for detected Rayleigh waves is optional, but as many NDCs as possible are urged to attempt this during GSETT-2. For those NDCs that will do so, time segments will be regularly transmitted for all detected Rayleigh waves, whether or not such Rayleigh waves can be associated with events whose P waves have been detected. The length of these segments will be 30 minutes of vertical component data, starting 5 minutes before the estimated onset time of the Rayleigh waves.

Abbreviated reporting of waveform data would be permitted during especially large sequences of local earthquakes, rockbursts and quarry blasts, similar to the abbreviated reporting of parameter data described in Appendix C. If the number of events exceeds about 10 per day from the same location, waveform time segments may be reported only for the largest event each day. The parameter message will give the number of similar events on that day.

NDC PROCEDURES: LEVEL I PARAMETERS TO BE REPORTED FROM
THREE-COMPONENT STATIONS AND ARRAY STATIONS
(Excerpt from Appendix C, CRP 190/Rev 4, 1990)
Parameter reports from each station contain only information required to permit IDC's to locate seismic events, determine the focal depth, determine Mb , and determine Ms when associated Rayleigh waves are detected. A summary of the wave types and the parameters to be reported is given in Table C.1.

The basis for the definitions of the parameters is the set of instructions for extraction of level 1 data described in earlier GSE CD documents (CCD/558, CD/43 and CD/448) and used for the GSETT (Conference Room Paper 131/Rev1). The definitions as presented here apply to extraction by an analyst and include the experience gained during the GSETT (documented in CD/720). Definitions for procedures based on automatic processing, including those for back azimuth, angle of incidence, as well as level of rectilinearity have to be further developed and tested.

For amplitude and period measurements, the stated precisions may not be achievable at all stations, and in this context it should be noted that the reporting formats (see Annex D1) are 'free' format and permit some latitude in precision of reported values. Two significant figures are considered adequate for both amplitude and period.
C.1 First arrival time of P-wave

On a visual record a first arrival time is defined by a change in amplitude or phase. The time reading is given in hours, minutes, seconds, and tenths of a second in Universal Coordinated Time (UTC). If the time is uncertain (clock problems) by more than 0.05 second, it must be reported in qualitative remarks. The first arrival should always be identified, if possible, by one of standard symbols. The symbols (phase codes) used by the International Seismological Center are recommended.

Because of the high accuracy of time measurements the problem of instrumental time delay must be noted. As an example, for WWSSN (World Wide Standardized Seismograph Network) SP instruments at 1 Hz , phase delay is about 0.3 seconds and group delay time is about 0.4 seconds. Corrections for these delays should be made before reporting arrival times.

C. 2 First Motion Sign and Clarity

Direction (or sign) of the first motion on vertical short- and long-period instruments should be reported. For complicated or weak signals, the direction of the first motion may be in doubt; if so, it is not to be reported. Theoretically the first onset should have the same sign on shortperiod (SP) and long-period (LP) instruments. However, due to different noise conditions, frequency response and magnification of $S P$ and LP recordings the first motions do not need to agree, particularly for multiple events starting with weak arrivals. In the case of a discrepancy in the directions the reasons should be checked by the operator before the information is reported.

The following first motion notations should be used:

C - SP compression (Up)
D - SP dilatation (Down)
U - LP compression
R - LP dilatation

The clarity parameter is used to indicate whether a recorded seismic signal represents a clear onset. If the signal onset can be identified within +/0.2 seconds for P waves or $+/-1$ second for S waves, the clarity notation I is used, while if the onset identification is less accurate, the clarity notation E is to be used. The clarity parameter Q is to be used for initial phases whose onset cannot be determined to better than 1 second accuracy.

C. 3 Time of Maximum P-wave Amplitude

This time corresponds to the maximum amplitude measured in the interval 0-6 seconds after the arrival of the P-wave. In case of large teleseismic events this interval would be extended to 20 seconds.
C. 4 Associated Amplitude

The amplitude of the first phase is to be determined from maximum trace amplitude within the first six seconds, corrected to ground motion using the measured period and the instrument response curve. Trace amplitude is measured on the vertical component as the center-to-peak deflection from the median line or may be obtained by taking one half of the peak-to- trough deflection of symmetrical waves. The ground amplitude is reported in nanometers to a precision of 0.01 nanometres. Since the upper limit for an absolute calibration of seismographs is 5-10\%, it is understood that the amplitude cannot be measured with a better accuracy than two significant figures.

C. 5 Associated Period

The period of the maximum amplitude is measured on the vertical component at zero crossings or between two neighbouring peaks or troughs. Period should be read to two significant figures and to a maximum precision of 0.01 seconds.

C. 6 Back azimuth, apparent angle of incidence, level of

 rectilinearity of the polarized wave.Back azimuth and angle of incidence should be computed to one degree. Level of rectilinearity should be computed to 0.01 .

Rectilinearity $=1-(a 2+a 3) / 2 a 1$,
where a1, a2, a3 are the principle axes lengths of the polarization ellipsoid.

C. 7 Secondary Phases

The standard notation for all phases is that used by the International Seismological Center. Arrival times of clear identified phases should be reported. Measurements of arrival time, maximum recorded amplitude, corresponding period, back azimuths, apparent angles of incidence and levels of rectilinearity of secondary phases (when appropriate) follow the same rules mentioned under 1-6. It is important that secondary phases, in particular pP, sP, and PcP are reported when possible. Another secondary phase of special important for stations at island or coastal locations is the hydro-acoustic wave (T-phase). The reporting of T-phases is recommended to improve the network capability in oceanic areas of the southern hemisphere.

C. 8 Arrival Time of a Maximum Rayleigh Wave

The arrival time of the maximum trace amplitude of the Rayleigh wave train is measured with a precision of 1 second.

C. 9 Maximum Amplitude of the Rayleigh Wave

The magnitude of the maximum deflection (center-to-peak from median) of the Rayleigh wave is measured from the maximum trace amplitude on the vertical component, corrected to true ground motion using the measured period and the instrument response curve. The ground amplitude is reported in micrometers with a maximum precision of 0.001 micrometer.
C. 10 Period of the Rayleigh Wave

The observed period of the maximum amplitude of the Rayleigh wave is reported in seconds.
C. 11 Back azimuth, level of rectilinearity of the Rayleigh wave.

Back azimuth is reported with precision of one degree. Level of rectilinearity of the polarised wave is reported with precision of 0.01 for estimate of the quality of the measurement.
C. 12 Noise Amplitude

If no Rayleigh wave can be associated to a detected P-phase, the largest amplitude of the seismic noise with period between 10-30 seconds is measured on the vertical component within one minute of the section of the record preceding the initial P-wave. The ground amplitude in micrometers is reported.

C. 13 Noise Period

The period of the corresponding noise amplitude is reported to a precision of one second.

Practically the same information is also reported from seismic arrays. The only difference is that, instead of angle of incidence, the arrays report the slowness value dt/d (s/deg) with a precision to 0.1 , as well as approximate values for the source parameters (source time, epicentre, mb and Ms).

C. 14 Qualitative Remarks

It is very important that the report is accompanied by remarks of the experienced analyst qualifying, if possible, the character of the event as seen from the visual inspection of the record or by a more sophisticated analysis. The following identifiers are suggested:

CL .. Instrument offscale; accompanied by 999999 on reported amplitude.

DD .. Multiple (double) event: complex wave pattern particularly in the P-wave group justifying such statement according to the analyst's experience.

DE .. Deeper than normal, intermediate; qualification made by the analyst if the wave pattern and amplitude ratios of main phases warrant it.

LA .. Local event within a very short distance, not possible to separate P and S phases.

LB .. Local event within a short distance. P and S separated but $S-P$ interval less than 25 sec. i.e., focal distance less than about 2 degrees.

ME .. Mixed events: two events overlapping and causing some confusion in reading an interpretation: if possible, they should be identified (local, regional, teleseismic).

NO .. Non-seismic origin: intended for local disturbances such as sonic booms, meteoroids, passing aircraft, etc., which do not justify separate codes. Intended for automatic use in EIDC processing, and should generally be accompanied by a separate explanation in (()).

NP .. Confirmation that no corresponding P wave is being reported for this event.

PQ .. Possible quarry blast.
QB .. Quarry blast: event announced by responsible authorities as a quarry blast, total charge in tons and coordinates should be indicated if known.

R .. Regional event somewhere between 2 degrees and 20 degrees, i.e., the wave pattern is influenced by waves travelling between the crust and the 20 degree discontinuity.

RB .. Rock burst: event announced by authorities or qualified to this category by a typical wave pattern.

TA .. Teleseismic event, a simple seismogram with largest amplitudes within first few seconds.

TB .. Teleseismic event, seismogram is made up of more than one discrete arrival.

TC .. Teleseismic event with a complex waveform made up of many arrivals.

TU .. Uncertain time: if the time correction is uncertain by more than 0.05 seconds because of clock problems.

The above parameters are transmitted within double parentheses according to the International Telegraphic Seismic Code. In the same way, location information (if available) and additional comments may be transmitted.

C. 15 NDC Location Information

NDCs are encouraged to provide information on location and other parameters of seismic events detected at their participating stations by use of a "FOCUS" group in their parameter reports. Sufficient information may be available within sufficient time from a local network to provide this information. A "FOCUS" group may also be produced from information recorded at a single array or three-component station which has one defining measurement of a P type phase (i.e., defining observations of time of arrival, azimuth and slowness or angle of incidence) and one observation of an S-type phase, provided that the event is located within 10 degs. of the station.

If EIDCs do not receive sufficient additional data on these NDC-reported events to undertake a separate estimate of the event parameters, the NDCreported events will be listed in a separate section of the unassociated data in the FEB (see Appendix D, Section D.3.4.2, and Appendix J, Section J.3).

C. 16 Abbreviated Reporting

For practical reasons of handling a manageable amount of data events classified by the station analyst as
(i) local earthquakes, quarry blasts or rockbursts
(ii) belonging to an earthquake sequence (e.g. more than ten events a day from the same place)
an abbreviated report would be allowable.
Parameter reports on local events should be limited to the arrival time, amplitude and period of P, or first clear phase, (parameters 2, 4, 5 of Table C.1) and a comment on the event.

During an especially large local earthquake sequence, it would be allowable to give a general description of the seismic field, such as "A local sequence took place between (time A) and (time B)", reporting level 1 data only for the largest event each day, and giving the number of events on that day.

Table C. 1

16. Qualitative remarks on local and regional events (may include locations and magnitudes)

1 GROUP names in accordance with Annex D1 of Appendix D. Parameters of GROUPS without parentheses, e.g., IFASE, are mandatory. Parameters of GROUPS designated by parentheses (e.g., COMP3) are optional.
2 Codes used by the International Seismological Center (ISC) are recommended.
3 The value of A corresponds to the maximum amplitude in the interval of 0 - 6 seconds after the arrival of the P-wave. In case of large teleseismic events this interval would be extended to 20 seconds.
4 These symbolic designators and the corresponding values are not part of the International Seismic Code and must be enclosed in double parenthesis (()).
5 To at least two significant figures, and to a maximum precision of 0.01 nm or 0.01 seconds.

6 Clear secondary phases should be reported whenever possible.
7 Arrival time, amplitude and period are mandatory for reported Rayleigh waves. Noise identifier, noise amplitude and period are mandatory if no Rayleigh wave is reported.

EIDC PROCEDURES FOR PREPARING AND COMPILING THE IEL
(Excerpt from Appendix B, CRP 190/Rev 4, 1990)
This appendix describes the procedures for preparation and compilation of the Initial Event List (IEL). The IEL is based on automatic processing of the station parameter data directly as reported by the NDC's.

Procedures for the processing of parameter data were first described in CCD/558 and then further in $C D / 43$ and $C D / 448$. The last of these gives the more complete description, in Appendix 7 of Addendum 1 to CD/448 under section 3, entitled "Procedures for Automatic Association and Location of Seismic Events", and thus is the obvious starting point for any revised procedures. The procedures given there are a combination of formal rules and suggestions as to how the bulletin satisfying these rules might be best achieved. These suggestions can be termed "algorithmic" in nature and are not mandatory. As long as the IEL contains only events which satisfy rigid event formation criteria, the exact means by which these were produced from the input data is not of great importance. The following, derived from Appendix 7 (section 3) of CD/448 are intended as procedures for GSETT-2. To facilitate comparison with the original text, the same headings are kept as far as possible.

The objectives of the processing of parameter data at EIDCs remain unchanged from those described in CD/43: "The association of arrival times should be carried out in a way that maximizes the probability of defining new events."

B. 1 Definitions

The process of forming seismic events and estimating their origin times and hypocenters is here referred to as association and location. This process is based on phases with related phase-names and observations reported from the seismic stations.

A phase refers to a more or less prominent onset on the seismic record that can be associated with a seismic wave type along some specifiable path through the earth's interior or along its surface. Phases believed to originate from the same seismic event are grouped together with the first arriving phase referred to as the primary phase and later phases referred to as secondary phases respectively (Appendix D, Annex D.1, page D39).

A phase is described by a phase-name (indicating wave type and path). A reported phase-name may be changed in the association and location process and the phase-name that is finally given by this process is called assigned phase-name.

A phase is also described by one or more observations. The following observations can be used in the association and location process: time of arrival, back-azimuth, and slowness or equivalent from angle of incidence reported by three component station. Observations of angle of incidence from a three component station are initially converted to slowness in the association and location process using the appropriate (P or S) phase velocity. The appropriate phase velocity may have been provided by the NDC responsible for the station; in the absence of such information the velocities of the upper crust ($P=5.57 \mathrm{~km} / \mathrm{s}, \mathrm{S}=3.37 \mathrm{~km} / \mathrm{s}$) implied in the Jeffreys-Bullen tables are to be used.

A set of joint observations of time of arrival, back-azimuth, and slowness (or equivalent from angle of incidence) of a phase at an array (or 3 component station) is called a phase measurement. That is to say a phase measurement, as defined here, consists of three observations.

Phases with related phase-names and observations underlying the formation of seismic events and the estimation of origin time and hypocenter are called defining. A defining phase has to have a defining time of arrival. A defining station has one or more defining phases. Only certain types of phases may be used in this process. There are also restrictions on how reported phase-names may be changed in the association and location process. Furthermore, a minimum number of a certain combination of observations is necessary to form a seismic event. The observations must also satisfy certain residual requirements. The minimum number of combinations, the rules for changing phase-names, and the residual requirements together define the event formation criteria.

Phases may also be flagged so that they may not be used as defining for other events. Phases may also be associated so that they appear in the event listing even if they are neither defining nor flagged.

B. 2 Defining Phase Types

Reported phases with the following assigned phase-names may be used for forming events:

- $\quad P$
- PKP (initial DF branch only)
- S
- local and regional P phases: Pg, P*, Pn
- local and regional S phases: Sg(Lg), S*, Sn
- depth phases pP, sP

A secondary phase may be defining only if the corresponding primary phase is defining.

B. 3 Event Formation Criteria

Each seismic event in the IEL should meet the following criteria:
B.3.1 Minimum Number of Observations

The formation of a seismic event must be based on defining phases with at least the following minimum numbers of observations or measurements:
(i)Four defining observations, not all of which are related to PKP phases, at three or more stations.

OR
(ii)One defining measurement (i.e., defining observations of time of arrival, azimuth and slowness or equivalent from angle of incidence) at one station and two observations at another station, where at least one of these stations is an array or within 10 degrees of the event.
B.3.2 Restrictions on the Use of Reported Phases

The following restrictions apply to phase-names assigned to phases that are defining:
(i)Phases assigned as P and PKP must have been reported as primary phases
(ii)Observations of phases reported as originating from local or regional events may be used only within local and/or regional distances (based on qualitative remarks, S-P time, reported location or distance, or phase name, etc.)
(iii)Observations of secondary phases assigned as pP and sP may be used only if reported phase-names were pP, sP, PP, PcP, or unknown.

B.3.3 Residual Requirements

All observations must have final residuals of less than 1.5 a priori standard deviations. These a priori standard deviations expressed in terms of residuals with respect to the Jeffreys-Bullen travel time table (used for all phases in the event location procedure), are as follows:
(i)time of arrival:

$$
\begin{array}{lr}
\text {-P }(25<\text { distance }<100 \text { deg }) & 1.0 \text { second } \\
\text {-P (all types;distance<25 deg }) & 3.0 \text { seconds } \\
\text {-S (all types) } & 5.0 \text { seconds }
\end{array}
$$

$-P K P$ (DF branch only)	1.5 seconds
$-\mathrm{pP}, \mathrm{sP}$	2.0 seconds

(ii)array slowness vector residual (in units of seconds/degree), or equivalent from three component processing:

Station/Phase Type

The slowness vector referred to above has components $S x=S * \cos (A z)$ and $S y=$ S * sin(Az) where S is the scalar slowness and Az the azimuth. The slowness vector residual is the length (scalar) value of the vector difference between the observed slowness vector and that predicted for the associated phase by Jeffreys-Bullen travel time derivative.

For SP arrays, the allowable slowness vector residual should decrease linearly from 3.0 to $1.5 \mathrm{sec} / \mathrm{deg}$ over the distance range 17.5 to 22.5 degrees.

B. 4 Hypocenter Location

Jeffreys-Bullens travel time tables should be used in the estimation of origin times and hypocenters of the events. Only those observations (time, azimuth, slowness/incidence angle) classified as defining may be used to locate. If the arrival time observation for a phase is defining, but the slowness/azimuth vector is not, then the arrival time should be used to locate. However, if the slowness/azimuth vector is defining, but the arrival time is not, then none of the observations should be used. When the slowness/azimuth vector and arrival time are both defining, the arrival time, slowness and azimuth observations must all be used to locate. The uncertainties of source parameters should be estimated from the a priori standard deviation. Uncertainties must be at the one standard deviation level for each parameter (latitude, longitude, depth, origin time). The units for latitude and longitude are great circle degrees, for depth are kilometers, and for time are seconds.

B. 5 Flagging of Phases as Removed from Further Consideration

One way of avoiding excessive processing time would be to flag phases corresponding to events with five or more defining observations at four or more stations such that they may not be used as defining for other events, provided that they satisfy the following requirements:
(i) The predicted 87% confidence interval of the expected
arrival time for the given station and phase should be less than 30 seconds.
(ii)The arrival time residual should lie in the interval (-3 to +10 seconds) or in the smaller of ($-c$ to +2 c) and (-5 to +10 seconds) where:

$$
c * * 2=\{\text { event, phase }\} * * 2+\{\text { phase }\} * * 2
$$

Abstract

\{phase\}**2 is the a priori standard deviation in the arrival time for that phase (section B.3.3), and \{event, phase\}**2 is the standard deviation in arrival time observation predicted from the calculated uncertainty in the event location and origin time.

Non-defining secondary phases (i.e., phases of types other than those given in section B.3.3 above) may also be flagged, provided that they satisfy the requirements given above.

The following secondary phases should be flagged for all events, if assigned as such:

PKP(BC branch)
PKP(AB branch)
PP
For large events, with more that 10 defining phases at distances greater than 25 degrees, the following associated secondary phases should also be flagged, subject to the same restrictions, however they may have been reported:

```
PcP
PKKP
PKPPKP (all branches)
SKP (all branches)
```

The a priori standard deviations of the arrival times of these later phases are:

PCP, PP 2.0 seconds
PKP (AB, BC) 1.5 seconds
All others 3.0 seconds
B. 6 Association of Phases

Phases may be associated to an event so that they appear in the event listing even if they are neither defining nor flagged according to the conditions given above. A phase is associated provided at least one of the following is true:
(i) the phase arrival time residual lies in the range -5 to +10 seconds

OR
(ii)the phase belongs to the same NDC-reported event section (annex D1, section D1.2.3) as at least one other phase that has been associated, except in cases where the automatic association process has determined that the
phase is defining for another event.
Note that phases may be multiply associated if they are not flagged. However, associated but unflagged arrivals may later become defining, whereas flagged phases may not.

Note that defining phases for a given event need not necessarily be flagged for that event, and in such a case are "free" to become defining to a later event. If they are also flagged by a later event, they may no longer be defining phases for the earlier event and this may then require that the earlier event be deleted if the event formation criteria are no longer satisfied. If a given phase appears to be defining to both (a contradiction in terms), but is flagged for neither, both events have to be included in the IEL.

B. 7 Amplitude Consistency Check

CD/43 recommends the application of statistical procedures involving not only the stations which have defining phases but also those which have not. This information is compared with a priori estimates of detection capabilities of the individual stations for an event, in order to establish whether or not the pattern of stations with and without defining phases fulfills a preset probability requirement for forming an event.

Potentially this method is very powerful in deciding whether or not small events, which only just satisfy event formation criteria, are valid, and this technique should routinely be applied only to events with defining phases from six stations or less. It can be used to point out inconsistencies in the solution without affecting the solution, for larger events.

B. 8 Calculation of Body Wave Magnitude

Individual station body wave magnitudes should be computed using the amplitude and period observations, corrected for distance by the Gutenberg-Richter amplitude-distance relation. Station magnitudes should only be calculated from observations for which the corresponding phase is defining for the event, and only for distances greater than 20 degrees.

Event magnitudes based on the average of individual station magnitudes are often strongly biased, and maximum likelihood methods should be applied in computing them. Care should be exercised in the application of such methods, as the a priori estimates of station noise levels and/or detectability often appear to be over-optimistic. The average magnitude should also be reported in calculating this average observations differing from the mean by more than 3 standard deviations should be excluded and the mean then recomputed.

B. 9 Association of Long-Period Data

Reported long-period data should be associated with an event if the theoretical arrival time at the reported period agrees with the reported arrival time of the maximum of the Rayleigh wave within three minutes plus one tenth of the theoretical travel time. The theoretical travel time is calculated according to the method given in Appendix 6.5 of CD/43. This procedure may give rise to multiple associations, which should be resolved as follows:
(i)If back-azimuth is reported, it is not allowed to deviate more than 50 degrees from the calculated station-to-epicenter azimuth;
(ii)If the arrival time residual of one of the events is less than three minutes, associations with a time residual of more than five minutes should be excluded;
(iii)Amplitude consistency checks, as described in sub section 7 above for short-period data, should be applied.

If multiple associations cannot be resolved by any of the above, the surface wave report should not be allowed to enter into the calculation of an event surface wave magnitude.

B. 10 Calculation of Surface Wave Magnitude

Individual station magnitudes should be calculated using the Prague formula. Maximum likelihood techniques, as described in sub-section 10 above, should be used to calculate the event surface wave magnitude.

EIDC PROCEDURES: INSTRUCTIONS FOR PREPARING CELS USING WAVEFORM ANALYSIS

(Excerpt from Appendix F, CRP 190/Rev 4, 1990)
The use of global network waveform data for seismic bulletin preparation is in its infancy. Strict rules for the waveform analysis are therefore difficult to define at this point in time and the procedures suggested here should be considered only as preliminary examples of what kind of processing might be useful preparing the event lists.

This appendix describes the preparation and compilation of the Current Event List (CEL). This process is based on information initially obtained from all IELs, analysis of waveform data and seismological judgement and, as it proceeds, from the CELs. The preparation of CELs will thus be a bootstrap process with each EIDC updating its own CEL to reflect the results of waveform analysis and seismological judgements as they are made in the interpretation of events. In turn, information contained in a CEL will provide a basis for various hypotheses which will be tested by the analysis of waveform data.

The objectives of CELs are to upgrade the quality of the IEL by extracting additional information not normally available or apparent to the NDC analysts, and to correct existing information. The preparation of CELs is guided by the same principle as the automatic formation of IELs, that is to maximize the number of valid events.

Each EIDC will exchange CELs daily and will be responsible for reviewing the information combined in all other CELs in order to converge on a common set of results among the EIDCs. This reconciliation should minimize differences prior to merging CELs to form a Final Event Bulletin.

F. 1 Content of the CEL

Preparation of the CELs includes use of the IELs of all EIDCs, the routinely reported station parameter and waveform data, and supplemental station parameter and waveform data that may be requested in the course of interactive analysis.

The preparation and compilation of the CELs involve daily editions of the CEL. The last CEL will represent the EIDCs view of what should appear in the final
event bulletin, the FEB.
F. 2 Rules

The information in the last edition of the CEL should be unique with respect to event hypotheses as well as defining phases.

Each event included in the list should meet the event formation criteria of Appendix B with the exception that the standard deviation may exceed the rules by 20% provided that additional confirmatory seismological evidence is available.

All defined events must be seismologically sound.
Phases reported by the NDCs, or new phases defined by the IDCs, must be entered only once as defining in the bulletin, or in the list of unassociated phases. If a phase initially appears as defining with more than one event or with more than one phase name for one event in the CEL, the analyst must select only one of the options using his best seismological judgement. Comments may be entered to note any remaining ambiguity in the analyst's mind.

All phases belonging to the same event section (annex D1, section D1.2.3) will remain together in chronological order in either the associated or unassociated event lists, unless the EIDC determines that the phase originated from another event.

All changes to information originally reported by the NDCs must be explained by use of comment codes, as follows:

N - the reported phase name has been changed.
M - one or several of the parameters reported by the NDC for this phase has been remeasured by the EIDC.

D - phases reported by the NDC as being from the same event have been disassociated by the EIDC.

A - phase added by the EIDC.
The comment codes can be combined.
F. 3 Analysis Procedures and Guidelines

The analysis steps suggested for preparation of CELs are grouped together in five categories that largely make up one cycle in the analysis:
(i) determine data to be requested;
(ii) reject spurious event hypotheses;
(iii) improve event solutions;
(iv) form additional events;
(v) review unassociated phases;

It may be necessary to iterate through this cycle several times.
F.3.1 Determine data to be requested

On the basis of the EIDC event lists and the available station parameter and waveform data, supplemental data that need to be requested for the subsequent analysis are determined and are requested.

F.3.2 Reject Spurious Event Hypotheses

The automatic location and association for the IEL often generates spurious events that can be rejected by waveform analysis and seismological judgements.

Events formed by Multiple Phase Associations
Events generated by the automatic IEL procedures may contain observations which are multiply defining. The result of the analysis should be that the EIDC must determine from which of the events the phase originated. Once this determination is made, the phase in question must be removed from all other event hypotheses and this may require that some other event hypothesis be rejected.

Split Events
The large number of phases that are generated by a large seismic event may not all be associated with the event in the automatic association and location process that results in the IEL. Quite often such unassociated phases become "free" and generate spurious so called split events, which frequently have origin times and hypocenters close to those of the large event. The EIDCs should determine when this has happened and reject the split event.

Other spurious Events

Because of the large number of phases reported from the station network, events may sometimes be generated in the automatic association and location process from phases that by chance meet the event formation criteria. EIDCs should use waveform analysis to assist with the identification of such events and reject them.

F.3.3 Improve Event Solutions

Many of the events that are located in the automatic processing are small and are often afflicted with large estimated errors in hypocentral co-ordinates, in particular depth. There are a large number of analysis steps and processing techniques that should be applied to improve the quality of the event location:

Disassociate and Reassociate Phases

Select Among Multiply Associated Phases.
The EIDCS should try to develop automated procedures to correctly associate a phase to one event only.

Verify and Improve Reported Parameter Measurements

Rename Phases

Add Phases

Search for and identify depth phases to assist in event definition.

Search for and identify secondary phases, e.g. PP and PcP, which could help confirm an event solution.

Resolve possible Interference of Surface Waves
Characterize arrivals by correlation with data from reference events.

F.3.4 Form Additional Events

Many events are reported by NDCs but are not included in the IELs. These NDC event hypotheses are obvious starting points in the search for additional events and waveform analysis would aim at associating additional observations.

Phases that could be available to generate additional events may be obtained from phases of events that are rejected (see Section F.3.2 above), from additional phases added by EIDCs and from the review of unassociated phases.
F.3.5 Review Unassociated Phases

The analysis of unassociated arrivals should aim at characterizing the signals so that as much as possible can be said about their origin, even if no hypocenter estimate can be obtained.

F. 4 Required Analysis Techniques

The EIDCs should be able to display waveforms and perform standard signal processing (bandpass filtering, deconvolution, and cross-correlation). Information regarding reported or expected secondary phases should be available. The EIDCs should also be able to repeat the waveform processing done at the NDCs.

EIDC PROCEDURES: COMPILATION OF THE FINAL EVENT BULLETIN
(Excerpt from Appendix J, CRP 190/Rev 4, 1990)
This appendix describes the procedures for compilation of the Final Event Bulletin (FEB). The FEB is compiled automatically from the final CELs reported by all four of the EIDCs. The final CELs are merged so that identical or similar event solutions are represented only once in the FEB, which thus will contain a list of "unique" seismic events. Supporting station parameter data are also listed for each such "unique" event.

J. 1 Definitions

An event group contains all event solutions from the final CELs whose location and origin time are within 3 degrees and 60 seconds, respectively, of the location and origin time of one other event in the group. Also, if there is an event that does not meet the distance and time requirements but that has two or more defining phases in common with another event, then this event should be put into a common event group, unless the originating EIDC insists that it be reported separately.

A representative event is the event solution chosen to represent an event group in the FEB.

One EIDC solution is chosen to be representative of each event group. there are five or more defining observations:

> the representative solution is the one with the maximum number of defining observations.
if two or more solutions have an equal number of defining observations, the next selection criterion is the solution with the maximum number of defining time observations.
if two or more solutions have an equal number of defining time observations, the next selection criteria is the solution with the smallest sum of the squares of the residuals for the defining time observations.

If there are fewer than five defining observations:
the representative solution is the one which contains the defining observation with the smallest station-to-event distance.

The event parameters for the representative solution are presented in the FEB. In addition event parameters are given for non-representative solutions of an event group, if any, as comments (see example) following the presentation of the event parameters of the representative solution. A maximum of one additional comment line must be presented for each EIDC CEL solution if it exists.

All phases and only those phases associated with the representative event are listed with the event.

J. 3 Listing of Unassociated Phases

The list of unassociated phases should include all phases that are not listed as defining or associated with an event. If a phase is within 3 seconds of a retimed phase from the same station that is associated with a representative event, then the phase is considered to be the same as the associated one and thus is excluded from the unassociated phase list. The unassociated data are listed in two sections. The first section contains locations provided by NDCs via a FOCUS line, together with their corresponding phases. The second section contains all other unassociated data. (See Appendix D, Section D.3.4.2.)

J. 4 Format for an Abbreviated Final Event Bulletin

A message format to be used for an abbreviated final event bulletin is defined here.

This message contains only seismic event source parameters (origin time, hypocenters, magnitudes etc.) and no lists of associated and unassociated station parameter reports.

All EIDC events are grouped together according to the procedures for the complete final event bulletin.

This abbreviated FEB would provide participants, in summary form, with a complete list of all seismic events reported by the EIDCs in one short
message.
It would also serve to provide a convenient overview of differences and similarities in EIDC seismic event solutions.
J.4.1 Header Identification

This message uses the header identification XB02 in the message header.
J.4.2 Structure of Data Section

The data section of the message consists of a listing of event groups.
J. 4.3 Format

The format of the abbreviated bulletin will be identical to the event sections (Appendix D, Section D.3.4.1) of the FEB.

File Name: CONTENTS.DOC

CONTENTS OF THE GSETT-2 CD-ROMS

February 1992
This file describes both the physical directory (or folder) structure of the
GSETT-2 CD-ROMs, and the contents of each directory.
1.0 BRIEF OVERVIEW OF CONTENTS

Given below is a schematic represenation of the directory hierarchy and a very brief explanation of contents of each directory. Greater details about the contents are given in subsequent sections.

1.1 Directory Hierarchy

1.2 Brief Explanation of Directories and Contents

GSETT: Top Level of CD-ROM

1991: Data that varies by data day specific

Data Day (Represented below as DD\#)

STATIONS: Data about the stations

GSEBULL: Summary Bulletins
STAPARM: Tables describing the Final Event Bulletin, First \& Last CEL station \& sensor parameters from each IDC as compiled during AFFILTN Network station GSETT-2 affiliations

INSTRMNT Default calibration
NDCPARM: Best,most recent parameters provided by NDCs
ARRIVAL.DD\# station detections REMARK.DD\# NDC comments STASSOC.DD\# station associations STAOUT.DD\# station outages identification of network SENSOR Specific calibration info for physical channels SITE Station location
info
WFDISC.DD waveform parameters SITEAUX Auxiliary site dependent info
NDCWAVE: Digital waveforms recorded
SITECHAN \quad Station-channel info by sensors nnnnnnn.w File containing several waveforms RESPONSE: Instrument response data files
WASCEL: Parameters from WASIDC analysis STA_PD.n File containing ARRIVAL.DD\# WAS IDC detections instrument response. ASSOC.DD\# WAS IDC associations See below for information ORIGIN.DD\# ORIGERR.DD\# NETMAG.DD\# Network magnitude REMARK.DD\# Analyst comments STAMAG.DD\# Station magnitude STASSOC.DD\# station associations

README: Short introduction to the CD-ROMs
DOC: Text Files containing information about the Experimentand the Data GSEINTRO.DOC: Overview of GSETT-2
HARDWARE.DOC: Hardware issues and details
CONTENTS.DOC: Directory/folder hierarcy of the CD-ROMS
FORMAT.DOC: Formats of the files on the CD-ROMs.
PROBLEMS.DOC: Known and suspected data problems
CONTACTS.DOC: Names and contact information for the GSE data centers.
COMMENTS.DOC: Form for reporting any problems or comments.

1.3 Detailed Explanation of Directories and Contents

GSETT: Top level directory. The only file present is README, which provides an introduction to the disks.

DOC: Contains extensive explanations of the rationale of the experiment, the formats of the files used on the disks, details of inconsistencies or problems with the data, and supplementary information. Due
to the length restriction on file names, the "AFFILIATION" table is in the
file AFFILTN and the "INSTRUMENT" table is in the file INSTRMNT.
STATIONS/STAPARM: Holds descriptive information about the stations
that participated in the test. All data is in Center table format as explained
in the FORMAT.DOC text file.
STATIONS/RESPONSE: Contains the calibration information for the stations that participated in the test. The files are constructed of the name
of the station (eg "NRAO"), an underscore, "_", the frequency band represented
(eg "SP"), a period, ".", and the number of the generation of the data. The
initial response is provided as generation 1 so an example file name would be NRAO_SP.1 . One response is contained in each file with the exception of
YKR2_SP.1, since CAN provided both poles and zeros and fir information. For
details on the format of these files, please see section 4 of the FORMAT. DOC
text file.
1991: Below here are directories for each Data Day of the experiment. The structure of each day is the same.

1991/DD\#/GSEBULL: Contains the Final Event Bulletin (FEB) and the Initial and last Current Event Lists (IEL \& CEL) for each EIDC for the Data
Day. For information on the format and the criteria used for these files,
please consult Section 6 of the FORMAT.DOC text file.
1991/DD\#/NDCWAVE: All of the waveforms received from the NDCs for this Data Day are in this directory. They are separated into files by station and the name of the file is composed of the waveform id of the first waveform in the file, a period, ".", and the capital letter "W". For more information on the layout of the waveform files, consult Section 3 of the FORMAT.DOC text file.

1991/DD\#/NDCPARM: These are the parameters reported by the NDCs to the EIDCs for the Data Day. Any corrections or additional data provided by the
NDCs after the conclusion of EIDC analysis will be present. See Section B of
the next Item for more information on the impact of this.
1991/DD\#/WASCEL: Here are the parameters compiled by the analysts at the Washington EIDC based on the data that was available during the test.
Please examine Section 2.0 below and the GSEINTRO.DOC file for clarification
on the criteria followed during analysis.

2.0 RATIONALE FOR THE COMPILATION OF THE GSETT-2 CD-ROMS

The data contained on these CD-ROMs were chosen based on two objectives:

1. To accurately reflect the performance and experiences of GSETT-2 so the
GSE can rigorously evaluate the test, and provide recommendations on future
systems for global seismic data exchange.
2. To provide a database of the best seismic parameter and waveform data to the seismological community for use in basic and applied research.

The file GSEINTRO.DOC contains a summary of the rules under which the GSETT-2
systems were to operate under ideal conditions. However, to understand the
slight tension between objectives 1 and 2, one must appreciate that ambitious
experiments like GSETT-2 rarely if ever operate under ideal conditions.
Hardware and software problems, communication outages, misunderstanding of the
rules, and the demanding schedules under which all data centers worked all
contribute to a dataset that is less than perfect at the time of the experiment. During and subsequent to the experiment, the data centers had the
opportunity to reconcile their databases (i.e., make sure that all messages
sent were received by all intended data centers) and to report and/or correct
known problems in their data. In many cases, new, corrected data were sent
and/or received long past the associated deadline. In these cases, the
corrected data are most likely the "best" data, however, they do not correctly
represent the data that available within the time schedules of GSETT-2.
In an effort to satisfy both objectives on these CD-ROMs, we have followed
these principles:
A. Data Source: The contents of the CD-ROMs reflect the contents of the
Washington EIDC database, though every effort was made to assure that our
database is identical to those at the other three EIDCs and that it contains
representatives of all data sent during the full-scale GSETT-2.
B. "Best" Data: The CD-ROMs contain what we believe to be the "best" parameter
and waveform data reported by each NDC. These are in the directories named
"NDCPARM", "NDCWAVE", and "STATIONS". This was compiled after GSETT-2 by
taking the representation for a given datum most recently sent by the NDC
(example: if two P phases from a given station and at a given time differ only
in amplitude, it is assumed that the last phase received was the corrected
and, hopefully, the best phase). The only exceptions to this were if an NDC
specifically instructed us to do otherwise. These data are provided in Center
for Seismic Studies Version 3.0 database format (CSS V3.0), which is a
"computer friendly" format familiar to many in the seismological community and
used by several of the participating data centers.
C. GSETT-2 Snapshot: The CD-ROMs contain a snapshot of the parameter database
as it existed during GSETT-2. We provide the seismic event lists and
bulletins (IELs, CELs, and FEBs) compiled by all four EIDC during the test in
GSE XB01 (bulletin) format in the directories named "GSEBULL". We also
provide the complete set of CSS V3.0 tables upon which the Washington EIDC's
CELs were based in the directory named "WASCEL".
D. Quality Control: In the "NDCWAVE" and "NDCPARM" directories ("best" data),
additional corrections were made to the data when sufficient information
existed to indicate a problem and specify a solution. If at all possible, the
source of the corrected data or of the specific instructions for correcting
the data was the NDC reponsible for furnishing the data in the first place.
Where we had strong indications that there might be a problem and we were
confident of the solution, every effort was made to confirm our solution with
the responsible NDC. Much attention was focussed on assuring that the
amplitude parameters (in the CSS V3.0 arrival files) and the waveform
amplitude calibrations (in the CSS V3.0 wfdisc files) are correct. Much
attention was also focussed on assuring the the instrument responses in the
"RESPONSE" directory are correct. No corrections were made to phase or waveform timing or to other parameters, since no NDC offered accurate
specifications for making such corrections. The presence of data provided
after the close of the experiment results in the following situation: An
arrival in the "WASCEL" directory may also be in the "NDCPARM" directory with
the same arrival identifier (arid) but with corrected information provided by
the NDC after the end of the experiment.
E. Data Differentiation: Since the "WASCEL" directory can contain data that
arrived before the end of the test but too late for use within the test
schedule, the "author" field in the "ARRIVAL.DD\#" file can be used to determine when an arrival was received by the Washington EIDC. This field is
composed of the name of the reporting NDC and the classification into which
the data is grouped. For example, an arrival from the NDC that was received
by midnight GMT on the day after the Data Day (Day 1) is considered to be on
time by the rules of GSETT and can be included into the Initial Event List
(IEL) for that Data Day. The author field for this arrival is NDC/IEL. The
second category was when an arrival was received after midnight on Day 1 , but before the end of analysis for the Data Day. For the CD-ROM's, this means
that the data was received at the Washington EIDC before midnight on Day 5.

Since this data could be included into the final Current Event List (CEL) for
the Data Day, the author would be NDC/CEL. Any data that arrived after this
time was not included in the analysis or the bulletins and therefore would
have the author specified as NDC/POST-CEL. This last classification includes
data received both during the remainder of the text and the period from the
end of the experiment to the date of compilation of GSETT-2 CD-ROMs.

The data in the "GSEBULL" and "WASCEL" directories are as they existed during the test. No subsequent corrections have been applied.

All reported and suspected data problems, and corrections applied by the
Washington EIDC have been cataloged in the PROBLEMS.DOC file in this directory. Please report any additional confirmed or suspected problems to the Washington EIDC at the address given below, and to the associated NDC or EIDC.

```
Dr. Steven Bratt, Mr. David Bonnett, Mr. David Corley
    Washington Experimental International Data Center
                    Center for Seismic Studies
        1300 North 17th Street, Suite 1450
                    Arlington, VA 22209 USA
                Telephone: +01 703-276-7900
            Telefax: +01 703-243-8950
                        Electronic Mail:
bratt@seismo.css.gov, bonnett@seismo.css.gov, corley@seismo.css.gov
```

FORMATS OF FILES USED ON CD-ROMS
$===========================$
January 1992

TABLE OF CONTENTS

1. DOCUMENT INTRODUCTION
2. DATABASE DESCRIPTION

2.1 INTRODUCTION

2.2 DATABASE STRUCTURE
2.3 DATABASE RELATIONS
2.4 DATABASE ATTRIBUTES
3. WAVEFORM FILE DESCRIPTION
4. INSTRUMENT RESPONSE FORMAT
5. GEOGRAPHIC/SEISMIC REGION INFORMATION
6. GSETT BULLETIN FORMAT

1 DOCUMENT INTRODUCTION

This volume describes the schema of the Version 3.0 database, the standard for data and software at the Center for Seismic Studies. This schema is used for the parameter data provided on these CD-ROM's. Detailed descriptions of the database structure, relations, and attributes appear in chapters 2, 3 and 4. Descriptions are also provided for the waveform and inst- rument files. A pointer to the geographic/seismic region designations used for this experiment is included. The explanation of the format used for the GSETT bulletins present in the "GSEBULL" directories is included.

2 DATABASE DESCRIPTION

2.1. INTRODUCTION

There are many relations in the core of Version 3.0. These
are separated into "Primary" and "Lookup" relations. The Primary relations are dynamic and contain attributes used in automated and interactive processing (e.g., seismic arrivals, event locations). The Lookup tables change infrequently and are used for auxiliary information used by the processing (e.g., station locations). In general terms, the information stored in the core relations includes:

- arrivals (seismic signals)
- events, origins, association of arrivals
- magnitude information
- station information (networks, site descriptions, instrument responses)
- pointers to disk files storing waveform data
- attributes describing the contents of the dynamic relations
- administrative data (counters, seismic and geographic regions)

2.2 DATABASE STRUCTURE

This chapter defines the physical structure of each table, as it exists within the ORACLE data dictionary and as it can exist as a flat file. The name of the relation appears in bold print at the top. Key attributes are shown first, convenience attributes next, followed by data fields. This hierarchy is described in the introduction to Chapter 3. Formats for "external" files specify fixed field widths and precisions in the style of FORTRAN. Exactly one blank separates fields in these files. This improves readability and makes it easier for C programs to scan the records. All numeric entries are right justified and all character strings are left justified. Having the field number quickly accessible is useful when dealing with flat files (e.g. awk and shell scripts).

Relation: Description:	affiliation Network station affiliations				
attribute	field	storage	external	character	attribute
net 1	a8	1-8	que netwo	identifier	
sta 2 c6	a6	10-15	tion iden	fier	
lddate 3	date	a17	17-33 1	d date	

attribute name		$\begin{gathered} \text { field } \\ \text { no. } \end{gathered}$	storage		exter	character positions	attribute description
			type		format		
sta	1	c6	a6	1-6	6 sta	n code	
time		2	f8	f17.5	8-24	epoch time	
arid		3	i4	i8	26-33	arrival id	
jdate		4	i4	i8	35-42	julian date	
stassid	5	i4	i8	44-5	1 sta	c id	
chanid	6	i4	i8	53-60	0 ins	ment id	
chan		7	c8	a8	62-69	channel code	\|
iphase	8	c8	a8	71-78	8 rep	ed phase	
stype		9	c1	a1	80-80	signal type	
deltim	10	f4	f6. 3	82-8	7 del	time	
azimuth	11	f4	f7. 2	89-9	5 obs	ed azimuth	
delaz		12	f4	f7. 2		03 delta	azimuth
slow		13	£4	f7. 2	$\begin{gathered} 10 \\ (\mathrm{~s} / \mathrm{d} \end{gathered}$	11 observed	slowness
delslo	14	f4	f7. 2		13-119	delta slown	ess
ema	15	f4	f7. 2		21-127	emergence angl	e
rect		16	f4	f7. 3	12	35 rectilin	arity
amp	17	f4	f10.1		$\begin{gathered} \text { 37-146 } \\ \text { ins } \\ \text { cor } \end{gathered}$	amplitude, ment ted, nm	
per	18	f4	f7. 2		48-154	period	
logat		19	f4	f7. 2		62 log(amp/	er)
clip		20	c1	a1		64 clipped	lag
fm	21	c2	a2		66-167	first motio	
snr	22	f4	f10.2		$\begin{gathered} 69-178 \\ \text { rat } \end{gathered}$	signal to nois	
qual		23	c1	a1		80 signal o	set quali
auth		24	c15		a15	182-196 sou	rce/origi
commid	25	i4	i8		98-205	comment id	

commid

sta	1	c6	a6	1-6	station code
chan	2	C8	a 8	8-15	channel
time	3	f8	f17.5	17-33	epoch time
nois	4	f4	f10.1	35-44	noise
noissd	5	f4	f5. 2	46-50	noise standard deviation
amcor	6	f4	f10.1	52-61	amplitude correction
amcorsd	7	f4	f5. 2	63-67	correction standard deviation
snthrsh	8	f4	f5. 2	69-73	signal/noise detection threshold
rely	9	f4	f5. 2	75-79	station reliability
ptmcor	10	f4	f6. 3	81-86	P arrival time correction
stmcor	11	f4	f6. 3	88-93	S arrival time correction
staper	12	f4	f5. 2	95-99	period for measurements
auth	13	c15	a 15	101-115	author
commid	14	i4	i8	117-124	comment id

Relation:		sitechan					
attribute		field	storage		external	character	attribute
name		no.	type	format		positions	descript
sta	1	c6	a6	1-6	statio	on identifier	
chan		2	c8	a8	8-15	channel ident	er
ondate	3	i4	i8	17-24	Julian	n start date	
chanid	4	i4	i8	26-33	3 channe	l id	
offdate	5	i4	i8	35-42	Julian	off date	
ctype		6	C4	a 4	44-47	channel type	
edepth	7	f4	f9.4	49-57	7 emplac	cement depth	
hang		8	f4	f6.1	59-64	horizontal an	
vang		9	f4	f6. 1	66-71 v	vertical angl	
descrip	10	c50		a50	73-1	122 channel	cription

Relation:		stamag	
attribute name	field no.	storage type	external character attribute format positions description
magid	1	i4	i8 1-8 magnitude id
sta 2	c6	a6	10-15 station code
arid	3	i4	i8 17-24 arrival id
orid	4	i4	i8 26-33 origin id
evid	5	i4	i8 35-42 event id
phase	6	c8	a8 44-51 associated phase
magtype 7	c6	a6	$\begin{aligned} & \text { 53-58 magnitude type (ml, } \\ & \mathrm{ms}, \mathrm{mb}, \mathrm{etc} .) \end{aligned}$
magnitude	8	f4	f7.2 60-66 magnitude
uncertainty	9	f4	f7.2 68-74 magnitude
			uncertainty
auth	10	c15	a15 76-90 source/originator
commid 11	i4	i8	92-99 comment id \|

Relation:	staout				
Attribute	Field				
Name	storage	external type format	character positions	attribute description	
sta	1	c 6	a6		
chan	2	c 8	a8	$1-6$	Station code
jdate	3	i4	i8	$8-15$	Channel code

2.3 DATABASE RELATIONS

This chapter describes the ORACLE relations that comprise the Version 3.0 Schema. The information given here, along with that in Chapter 4, Database Attributes, constitutes the data dictionary. There is an entry for each relation. Within the entry, the relation's name appears first, followed by a list of its attributes. A brief description completes the entry. The attributes of the relation are arranged in the following order: Keys, Convenience, Data. Key attributes link relations. Convenience attributes are redundant data whose real home is another relation, but are included in this table for the sake of convenience. Data attributes, the reason this table exists, are split into three categories: Descriptive, Measurement and Administrative. The following tableau explains the format used in the entries.

Keys provide the links by which tables are joined. The following definitions explain the several types of keys.

A primary key (which often is the concatenation of several attributes) uniquely identifies a row in the table. For example, each origin record is unique by lat, lon, depth, and time.

An alternate key also uniquely identifies a row in the table and may be used as the primary key. For example, orid may also be used as the primary key for the origin table.

A foreign key is another table's primary key. Thus, evid is a foreign key in the origin table, but is the primary key in the event table. Similarly, commid is a foreign key in many of the tables and the primary key in remark.

Name: affiliation
Keys: Primary. net, sta
Data: Administrative. lddate

Description: Network-Station affiliations. This is an
intermediate relation by which seismic stations may be clustered into networks.

Name: arrival

Keys: Primary. sta, time
Alternate. arid
Foreign. stassid, chanid, commid
Convenience: jdate
Data: Descriptive. chan, iphase, stype
Measurement. deltim, azimuth, delaz, slow, delslo, ema, rect, amp, per, logat, clip, fm, qual
Administrative. auth, lddate
Description: Summary information on a seismic
arrival. Information characterizing a "seismic phase" observed at a particular station is saved here. Many of the attributes conform to seismological convention and are listed in earthquake catalogs.

Name: assoc

Keys: Primary. arid, orid
Foreign. commid
Convenience: sta

Data: \quad| Descriptive.phase, belief |
| :--- |
| Measurement. delta, seaz, esaz, timeres, |
| timedef, azres, azdef, slores, slodef, emares, |
| wgt |
| Administrative. vmodel, lddate |

Description: Data associating arrivals with origins.
This table has information that connects arrivals
(i.e., entries in the arrival relation) to a
particular origin. It has a composite key made of
arid and orid. There are two kinds of measurement
data: three attributes are related to the station
(delta, seaz, esaz), and the remaining measurement
attributes are jointly determined by the
measurements made on the seismic wave (arrival),
and the inferred event's origin (origin). The
attribute sta is intentionally duplicated in this
table to eliminate the need for a join with
arrival when doing a lookup on station.

Name: netmag
Keys: Primary. magid
Foreign. evid, net, orid, commid
Data: Descriptive.magtype, nsta
Measurement. magnitude, uncertainty
Administrative. auth, lddate
Description: Network magnitude. This table summarizes
estimates of network magnitudes of different types
for an event. Each network magnitude has a unique magid. Station magnitudes used to compute the network magnitude are in the relation stamag.

Name: network

Keys: Primary. net

Name: origin

Keys: Primary. lat, lon, depth, time Alternate. orid
Foreign. evid, commid
Convenience: jdate

Data: Descriptive.nass, ndef, ndp, grn, srn, etype Measurement. depdp, dtype, mb, mbid, ms, msid, ml, mlid Administrative. algorithm, auth, lddate

Description: Summary of hypocentral parameters. Information describing a derived or reported origin for a particular event is stored in this table.

Name: remark

Keys: Primary. commid, lineno
Data: Descriptive.remark
Administrative. lddate

Description: Comments. This relation may be used to store free-form comments that embellish records of other relations. The commid field in many relations refers to a tuple in the remark table.

If commid is null (-1) in a tuple of any other relation, there are no comments stored for that tuple.

Name: sensor

Keys: Primary. sta, chan, time, endtime Foreign. inid
Convenience: chanid, jdate
Data: Descriptive.instant Measurement. calratio, calper, tshift Administrative. lddate
Description: Calibration information for specific sensor channels. This table provides a record of updates in the calibration factor or clock error of each instrument, and links a sta/chan/time to a complete instrument response in the relation instrument.
Waveform data are converted into physical units through multiplication by the calib attribute located in wfdisc. It can happen that the correct value of calib is not accurately known when the wfdisc record is entered into the data base. The sensor relation provides the mechanism (calratio and calper) to "update" calib, without requiring that possibly hundreds of wfdisc records be updated.
Through the foreign key inid this table is linked to instrument which has fields pointing to flat files holding detailed calibration information in a variety of formats. See instrument.

Name: siteaux

Keys: Primary. sta, chan, time

Foreign. commid

Data: \quad| Measurement.nois, noissd, amcor, amcorsd, snthrsh, |
| :--- |
| |
| rely, ptmcor, stmcor, staper |
| |
| |
| Administrative. auth, lddate |

Description: Auxiliary site dependent parameters.

Name: s	sitechan
Keys:	Primary. sta, chan, ondate Alternate. chanid
Data:	```Descriptive.offdate, ctype Measurement. edepth, hang, vang, descrip Administrative. lddate```
Description	n: Station-Channel information. This relation describes the orientation of a recording channel at the site referenced by sta. This relation provides information about the various channels (e.g. sz, lz, iz) that are available at a station and maintains a record of the physical channel configuration at a site.

Name: stamag
Keys: Primary. magid, sta
Foreign. arid, orid, evid, commid
Data: Descriptive.phase, magtype
Measurement. magnitude, uncertainty
Administrative. auth, lddate

Description: Station magnitude. This table summarizes station magnitude estimates based upon measurements made on specific seismic phases. See netmag.

Name: staout

Keys: Primary. msgid, sta

Description: This table gives the time intervals
for station outages. Fields 2-5
correspond to information on line starting with "OUT" of GSE parameter data messages (see page D 38 of Annex D. 1 in GSE CRP 190/Rev.4). The external format for field 2, chan is here a8 to allow expressions like SPALL (all short period channels).

Name:	stassoc
Keys:	Primary. stassid Foreign. commid Data : Meascriptive.sta, etype, location

depth, time, imb, ims, iml
Administrative. auth, lddate
Description: Summary information on groups of related arrivals. This table defines the group of phases seen at a single station from the same event.

Name: wfdisc

Keys: Primary. sta, chan, time
Alternate. wfid
Foreign. chanid, commid
Convenience: jdate, endtime

Data: Descriptive. nsamp, samprate, calib, calper, instype, segtype, datatype, clip, dir, dfile, foff Administrative. lddate
Description: Waveform header file and descriptive information. This relation provides a pointer (or index) to waveforms stored on disk. The waveforms themselves are stored in ordinary disk files called wfdisc or .w files, containing only a sequence of sample values (usually in binary representation).

2.4 DATABASE ATTRIBUTES

This chapter describes each of the attributes used in the Version 3.0 Schema. Descriptions of the relations are found in Chapter 3, Database Relations. Attributes are presented as follows:

Name: This is the name of the attribute. Relation: These are the database relations which contain the attribute.

Description: This paragraph describes the attribute.
ORACLE: This identifies the ORACLE data type.
NA Value: This is a value used to indicate that information is not available for this attribute. Many attributes in this schema are optional. The NA value is defined for these attributes and should be used when the actual value is not known. Essential attributes must always be given a value; they are documented as NA Value NOT ALLOWED.
Units: This lists the unit of measurement for the attribute, if applicable.

Range:
This is the range of permissible or recommended values for this attribute, if such a range exists. For most strings, the range indicates the recommended values, but is not restricted to those values.

The following conventions are applied throughout.

Dates and Times

The time attribute throughout the database is stored as epochal time, the number of seconds since January 1, 1970. Epochal time has a precision of 1 millisecond. Often time is matched by the more readable attribute, jdate. This so called "Julian date" represents a day in the form, for example, 1981231 where 1981 is the year (YYYY) and 231 is the day of year (DOY).

Units of Measurement

Attribute descriptions also include the unit of measurement, if applicable. Here are some quantities with their corresponding measurement units:

NA Values

Whenever possible, explicit ranges are defined for each attribute. This is important for data integrity and prepares us for future database management systems which will perform range checking automatically. When the range consists of some element in a finite set, we use the notation $\{e 1|e 2| \ldots \mid$ en $\}$ where "|" denotes the logical OR operation. No range is documented for attributes whose value may be any floating point number.

Sometimes no information is available for an attribute. In that case, an NA (NOT AVAILABLE) value is assigned. An NA value is outside the range of permissible or recommended values for the attribute. This special NA value alerts users and applications that the desired attribute was not available when the record was created. For example, in the origin relation, the attribute ms, surface wave magnitude, may be unknown for a given record, since it often can't be measured. Then the NA value for magnitudes (-999.0) should be assigned to ms and msid should be set to -1 , the NA value for msid. Some attributes are essential to defining a meaningful record and they must be specified; the NA value is not allowed. For example, the attribute time in arrival must be given a value in the valid range, not an NA value.

Another example is magnitude in netmag and stamag. Magnitude must be given a meaningful value for each record, so there is no NA value defined.

Some general guidelines and specific examples of NA values are given in the following table.

Representative NA

character fields non-negative integer numbers non-negative real numbers	$-(a)$	-1
negative real numbers conf deast,	-1.0	
endtime	0.0	-999.0
time		

Format of Character Data
Most character fields are lowercase. The following two
lists of attributes define the exceptions:
Uppercase: auth, instype, grname, srname,
Mixed Case: sta, staname, volname

ORACLE Data Types
The Version 3.0 database uses four of the available ORACLE data types:

VARCHAR	All character data in the database is defined
	to be VARCHAR(n) where "n" is the number of characters in the string (not including a
	null terminator as in C strings).


```
NA Value: - (a dash)
Range: {d | n}, lower case
Name: azimuth
Relations: arrival, stassoc
Description: Observed azimuth. This is the estimated
        station-to-event azimuth measured clockwise
        from north. Azimuth is estimated from f-k or
        polarization analysis. In stassoc, the value
        may be an analyst estimate.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Degrees
Range: \(0.0<\) azimuth \(<360.0\)
Name: azres
Relation: assoc
Description: Azimuth residual. This is the difference
    between the measured station-to-event azimuth
    for an arrival and the true azimuth. The
    "true" azimuth is the bearing to the inferred
    event origin.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Degrees
Range: -180.0 < azres < 180.0
Name: band
Relation: instrument
Description: Frequency band. This is a qualitative indicator of frequency pass-band for an instrument. Values should reflect the response curve rather than just the sample rate. Recommended values are s (shortperiod), m (mid-period), i (intermediateperiod), l (long-period), b (broad-band), h (high frequency, very short-period), and v (very long-period). For a better notion of the instrument characteristics, see the instrument response curve.
```


Units:	Seconds
Range:	calper > 0.0
Name:	calratio
Relation:	: sensor
Descripti	ion: Calibration conversion ratio. This is a dimensionless calibration correction factor which permits small refinements to the calibration correction made using calib and calper from the wfdisc relation. Often, the wfdisc calib contains the nominal calibration assumed at the time of data recording. If the instrument is recalibrated, calratio provides a mechanism to update calibrations from wfdisc with the new information without modifying the wfdisc relation. A positive value means ground motion increasing in component direction (up, north, east) is indicated by increasing counts. A negative value means the opposite. Calratio is meant to reflect the most accurate calibration information for the time period for which the sensor record is appropriate, but the nominal value may appear until other information is available.
ORACLE:	FLOAT (24)
NA Value:	: NOT ALLOWED. A valid entry is required.
Range:	Any non-zero floating quantity.

Name: chan

Relations: arrival, sensor, siteaux, sitechan, wfdisc
Description: Channel identifier. This is an eightcharacter code, which, taken together with sta, jdate and time, uniquely identifies the source of the seismic data, including the geographic location, spatial orientation, sensor and subsequent data processing.

ORACLE: VARCHAR(8)
NA Value: "-" (a dash) Allowed only in arrival. A valid entry is required in sensor, sitechan and wfdisc.

Range: Any sequence of up to 8 lower case characters.

Name: chanid

Name: conf

Relation: origerr

Description: Error confidence. This attribute denotes the confidence attached to the event attributes smajax, sminax, sdepth and stime.

ORACLE: FLOAT (24)
NA Value: $\quad 0.0$

Range: $\quad 0.0<\operatorname{conf}<1.0$

Name: ctype
Relation: sitechan

Description: Channel type. This attribute specifies the type of data channel: n (normal, a normal instrument response), b (beam, a coherent beam formed with array data), or i (an incoherent beam or energy stack).

ORACLE: VARCHAR(4)
NA Value: $\quad-\quad$ (a dash $)$
Range: $\quad\{\mathrm{n}|\mathrm{b}| \mathrm{i}\}$, lower case

Name: datatype

Relations: wfdisc

Description: Numeric data storage. This attribute specifies the format of a data series in the file system. Datatypes i4, f4 and s4 are typical values. Datatype i4 denotes a 4-byte integer and $f 4$ denotes a 32 -bit real number in DEC/VAX format. s4 is an integer where the most significant byte is in the low address position in memory (used by Motorola and Sun chipsets) and is opposite to the order used on DEC and Intel chipsets. Machine dependent formats are supported for common hardwares to allow data transfer in native machine binary formats. ASCII formats have also been defined to retain full precision of any binary data type. ASCII may be used when exchanging data between computer systems with incompatible binary types. See the "wfport" command manual page for information about converting formats. Datatype can only describe single values or arrays of one data type.

NA Value: $\quad-\quad(a \operatorname{dash})$
Range: The currently recognized types (lower case is mandatory) are:

Name: deast

Relation: site

Description: Distance east. This attribute gives the "easting" or relative position of an array element, east of the location of the array center specified by the value of refsta. See dnorth.

ORACLE: FLOAT(24)
NA Value: 0.0

Units: Kilometers

Range: $\quad-20,000.0<$ deast $<20,000.0$

Name: delaz
Relation: arrival

Description: Delta azimuth. This attribute gives the standard deviation of the azimuth of a signal.

ORACLE :
FLOAT (24)

NA Value: -1.0


```
Range: deltim > 0.0
Name: depdp
Relation: origin
Description: Depth as estimated from depth phases. This is
        a measure of event depth estimated from a
        depth phase or an average of several depth
        phases. Depth is measured positive in a
        downwards direction starting from the earth's
        surface. See ndp.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Kilometers
Range: 0.0 < depdp < 1000.0
Name: depth
Relations: origin, stassoc
Description: Source depth. This attribute gives the depth
    of the event origin. In stassoc this may be an
    analyst estimate.
ORACLE: FLOAT(24)
NA Value: -999.0 origin.
Units: Kilometers
Range: 0.0 < depth < 1000.0
Name: descrip
Relation: sitechan
Description: Channel description. This is a description of
    the data channel. For non-instrument channels
    (e.g. beams) this can be the only quantitative
    description of channel operations in the core
    tables.
ORACLE: VARCHAR(50)
NA Value: - (a dash)
Range: Any free-format string up to 50 characters
Name: dfile
```


NA Value: -1.0

Units: Degrees
Range: $0.0<$ dist <180.0

Name: dnorth

Relation: site

Description: Distance north. This attribute gives the "northing" or relative position of array element north of the array center specified by the value of refsta. See deast.

ORACLE: FLOAT (24)
NA Value: 0.0

Units: Kilometers
Range: $\quad-20,000.0<$ dnorth $<20,000.0$

Name: dtype
Relation: origin
Description: Depth determination flag. This singlecharacter flag indicates the method by which the depth was determined or constrained during the location process. The recommended values are f (free), d (from depth phases), r (restrained by location program) or g (restrained by geophysicist). In cases r or g, either the auth field should indicate the agency or person responsible for this action, or the commid field should point to an explanation in the remark relation.

ORACLE: VARCHAR(1)
NA Value: $\quad-\quad(a \operatorname{dash})$
Range: $\quad\{f|d| r \mid g\}, ~ l o w e r ~ c a s e$

Name: edepth
Relation: sitechan

Description: Emplacement depth. This attribute gives the depth at which the instrument is positioned, relative to the value of elev in the site relation.

```
NA Value: NOT ALLOWED. A valid entry is required.
Units: Kilometers
Range: edepth > 0.0
Name: elev
Relations: site
Description: Elevation. This attribute is the elevation of
    a seismic station relative to mean sea level.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Kilometers
Range: -10.0 < elev < 10.0
Name: ema
Relation: arrival
Description: Emergence angle. This attribute is the
    emergence angle of an arrival, as observed at
        a three-component station or array. The value
        increases from the vertical direction towards
        the horizontal.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Degrees
Range: 0.0 < ema < 90.0
Name: emares
Relation: assoc
Description: Emergence angle residual. This attribute is
    the difference between an observed emergence
    angle and the theoretical prediction for the
    same phase, assuming an event location as
    specified by the accompanying orid.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Degrees
Range: -90.0 < emares < 90.0
```

Name: endtime

```
Relations: sensor, wfdisc
Description: Time of last datum. In wfdisc,
    this attribute is the time of the last sample
    in the waveform file. Endtime is equivalent
    to time + (nsamp - 1)/samprate. In sensor,
    this is the last time the data in the record
    are valid.
ORACLE: FLOAT(53)
NA Value: +9999999999.999
Units: Epochal seconds
Range: endtime > time
Name: esaz
Relation: assoc
Description: Event to station azimuth. This attribute is
    the calculated event-to-station azimuth,
    measured in degrees clockwise from North.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Degrees
Range: 0.0 < esaz < 360.0
Name: etype
Relations: origin, stassoc
Description: Event type. This attribute is used to
    identify the type of seismic event, when
    known. For etypes l, r, t the value in origin
    will be the value determined by the station
    closest to the event.
ORACLE: VARCHAR(7)
NA Value: - (a dash)
Range: The recommended codes (all lower case) are:
\begin{tabular}{|ll|l|}
\hline & & \\
\hline \begin{tabular}{lll} 
etype & meaning \\
code & of code
\end{tabular} & \(\mid\) \\
\hline
\end{tabular}
```

qb	Quarry blast or mining explosion		
eq	Earthquake		
me	Marine explosion		
ex	Other explosion		
\bigcirc	Other source of known origin		
1	Local event of unknown origin		
r	Regional event of unknown origin		
Name:	evid		
Relations	s: netmag, origin, stamag		
Descripti	ion: Event identifier. Each event is assigned unique positive integer which identifies it in a database. It is possible for several records in the origin relation to have the same evid. This indicates there are several opinions about the location of the event.		
ORACLE :	NUMBER (8)		
NA Value:	: -1 Allowed in netmag, origin and stamag.		
Range:	evid > 0		
Name:	fm		
Relation:	: arrival		
Descripti			
ORACLE:	VARCHAR (2)		
NA Value:	: \quad - (a dash)		
Range:	All two-letter permutations of $\{\mathrm{c}\|\mathrm{d}\|$ \| \}, \{u	r	. \}, lower case
Name:	foff		
Relation:	: wfdisc		
Descripti	ion: File offset. This is the byte offset of a waveform segment within a data file. It is used when data are multiplexed. See dir and dfile.		

Name: iml

```
Relation: stassoc
Description: Initial local magnitude. This is an analyst's
    estimate of the local magnitude using data
    from a single station. See imb, ims,
    magnitude, magtype, mb, ml and ms.
ORACLE: FLOAT(24)
NA Value: -999.0
Name: ims
Relation: stassoc
Description: Initial surface wave magnitude. This is an
    analyst's estimate of surface wave magnitude
    using data from a single station. See
    magnitude, magtype, mb, ml, ms, imb and iml.
ORACLE: FLOAT(24)
NA Value: -999.0
Name: inid
Relations: instrument, sensor
Description: Instrument identifier. This is a unique key
    to the instrument relation. Inid provides the
    only link between sensor and instrument.
ORACLE: NUMBER(8)
NA Value: -1 Allowed only in sensor. A valid entry is
    required for instrument.
Range: inid > 0
Name: insname
Relation: instrument
Description: Instrument name. This is a character string
    containing the name of the instrument.
ORACLE: VARCHAR(50)
NA Value: - (a dash)
Range: Any free-format string up to 50 characters
        long.
```

Name: instant

Range: Any free-format string up to 6 characters long.

Name: mb	
Relation:	: origin
Description: Body wave magnitude. This is the body wave magnitude of an event. Associated with this attribute is the identifier mbid which points to magid in the netmag relation. The information in that record summarizes the method of analysis and data used. See imb, iml, ims, magnitude, magtype, ml and ms.	
ORACLE:	FLOAT (24)
NA Value: -999.0	
Name: mbid	
Relation: origin	
Description: Magnitude identifier for mb. This stores the magid for a record in netmag. Mbid is a foreign key joining origin to netmag where origin.mbid $=$ netmag.magid. See magid, mlid and msid.	
ORACLE:	NUMBER(8)
NA Value:	: -1
Range: mbid > 0	
Name:	ml
Relation: origin	
Description: Local magnitude. This is the local magnitude of an event. Associated with this attribute is the identifier mlid, which points to magid in the netmag relation. The information in that record summarizes the method of analysis and the data used. See imb, iml, ims, magnitude, magtype, mb and ms.	
ORACLE:	FLOAT (24)
NA Value:	$: \quad-999.0$
Name:	mlid
Relation:	: origin


```
Name: nois
Relation: siteaux
Description: Nominal background noise level.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Nanometers
Range: nois > 0.0
Name: noissd
Relation: siteaux
Description: Noise standard deviation.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Log nanometers
Range: noissd > -999.0
Name: nsamp
Relation: wfdisc
Description: Number of samples. This quantity is the
    number of samples in a waveform segment.
ORACLE: NUMBER(8)
NA Value: NOT ALLOWED. A valid entry is required.
Range: nsamp > 0
Name: nsta
Relation: netmag
Description: Number of stations. This quantity is the
    number of stations used to compute the
    magnitude of the event.
ORACLE: NUMBER(8)
NA Value: -1
Range: nsta > 0
```

Name: offdate

```
Relations: site, sitechan
Description: Turn off date. This attribute is the Julian
    Date on which the station or sensor indicated
    was turned off, dismantled, or moved. See
    ondate.
ORACLE: NUMBER(8)
NA Value: -1
```

Range: Julian date of the form yyyyddd
Name: ondate
Relations: site, sitechan
Description: Turn on date. This attribute is the Julian
Date on which the station or sensor indicated
began operating. Offdate and ondate are not
intended to accommodate temporary downtimes,
but rather to indicate the time period for
which the attributes of the station (lat, lon,
elev) are valid for the given station code.
Stations are often moved, but with the station
code remaining unchanged.
ORACLE: NUMBER(8)
NA Value: NOT ALLOWED. A valid entry is required.
Range: Julian date of the form yyyyddd

Name: orid

Relations: assoc, netmag, origerr, origin, stamag
Description: Origin identification. Each origin is
assigned a unique positive integer which
identifies it in a data base. The orid is
used to identify one of the many hypotheses of
the actual location of the event.
ORACLE: NUMBER(8)
NA Value: NOT ALLOWED. A valid entry is required for all
relations.
Range: orid > 0

Name: per

Relation	remark
Descript	ion: Descriptive text. This single line of text is an arbitrary comment about a record in the database. The comment is linked to its "parent" relation only by forward reference from commid in the tuple of the relation of interest. See commid and lineno.
ORACLE:	VARCHAR (80)
NA Value:	$: \quad-\quad$ (a dash)
Range:	Any free-format string up to 80 characters long.
Name:	rsptype
Relation:	instrument
Descript	ion: Instrument response type. This denotes the style in which detailed calibration data are stored. The neighboring attribute dfile tells where the calibration data are saved. When rsptype $=$ paz, it indicates the data are the poles and zeroes of the Laplace transform. rsptype $=$ fap indicates they are amplitude/phase values at a range of frequencies. rsptype $=$ fir indicates it is a finite impulse response table. rsptype = pazfir indicates a combination of poles, zeros and finite impulse response. Other codes may be defined.
ORACLE:	VARCHAR (6)
NA Value:	NOT ALLOWED. A valid entry is required.
Range:	Any lower case string up to 6 characters long
Name:	samprate
Relations	: instrument, wfdisc
Descripti	ion: Sampling rate. This attribute is the sample rate in samples/second. In the instrument relation this is specifically the nominal sample rate, not accounting for clock drift. In wfdisc, the value may vary slightly from the nominal to reflect clock drift.
ORACLE:	FLOAT (24)
NA Value:	: NOT ALLOWED. A valid entry is required.
Units:	1/seconds

```
Range: samprate > 0.0
Name: sdepth
Relation: origerr
Description: Depth error. This is the maximum error of a
    depth estimate for a level of confidence given
    by conf. See smajax, sminax, stx.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Kilometers
Range: sdepth > 0.0
Name: sdobs
Relation: origerr
Description: Standard error of one observation. This
    attribute is derived from the discrepancies in
    the arrival times of the phases used to locate
    an event. It is defined as the square root of
    the sum of the squares of the time residuals,
    divided by the number of degrees of freedom.
    The latter is the number of defining
    observations (ndef in origin ) minus the
    dimension of the system solved (4 if depth is
    allowed to be a free variable, 3 if depth is
    constrained).
ORACLE: FLOAT(24)
NA Value: -1.0
Range: sdobs > 0.0
Name: seaz
Relation: assoc
Description: Station to event azimuth. This attribute is
    calculated from the station and event
    locations. It is measured clockwise from
    North.
ORACLE: FLOAT(24)
NA Value: -999.0
Units: Degrees
Range: 0.0 < seaz < 360.0
```



```
NA Value: -1.0
Units: Seconds/degree
Range: slow > 0.0
Name: smajax
Relation: origerr
Description: Semi-major axis of error ellipse for a given
    confidence. This is the length of the semi-
    major axis of the location error ellipse. It
    is found by projecting the covariance matrix
    onto the horizontal plane. The level of
    confidence is specified by conf. See sdepth,
    sminax and stx.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Kilometers
Range: smajax > 0.0
Name: sminax
Relation: origerr
Description: Semi-minor axis of error ellipse. This is the
    length of the semi-minor axis of the location
    error ellipse. It is found by projecting the
    covariance matrix onto the horizontal plane.
    The level of confidence is specified by conf.
    See sdepth, smajax and stx.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: Kilometers
Range: sminax > 0.0
Name: snr
Relation: arrival
Description: Signal-to-noise ratio. This is an estimate of
    the size of the signal relative to that of the
    noise immediately preceding it.
```

NA Value: -1.0
Range: snr > 0.0
Name: snthrsh
Relation: siteaux
Description: Nominal signal/noise detection threshold.
ORACLE: FLOAT(24)
NA Value: -1.0
Range: snthrsh > 1.0
Name: srn
Relation: origin
Description: Region number. This is a seismic region
number, as given by Flinn, Engdahl and Hill
(Bull. Seism. Soc. Amer. vol 64, pp 791-992,
1974). See grn, grname and srname.
ORACLE: NUMBER(8)
NA Value: -1 Allowed only in origin. A valid entry is
required in sregion.
Range: srn > 0
Name: sta
Relations: affiliation, arrival, assoc, sensor, site,
siteaux, sitechan, stamag, stassoc, wfdisc
Description: Station code. This is the common code-name of
a seismic observatory. Generally only three or
four characters are used.
ORACLE: VARCHAR (6)
NA Value: "-" (a dash) Allowed only in stassoc. A valid
entry is required for all other relations.
Range: Any upper case string up to 6 characters long
Name: staname
Relation: site
Description: Station name/description. This is the full
name of the station whose code-name is in sta.
As an example, one record in the site relation

```


```

Description: Elements of the covariance matrix for the
location identified by orid. The covariance
matrix is symmetric (and positive definite) so
that sxy = syx, etc., (x,y,z,t) refer to
latitude, longitude, depth and origin time,
respectively. These attributes (together with
sdobs, ndef and dtype) provide all the
information necessary to construct the K-
dimensional (K=2,3,4) confidence ellipse or
ellipsoids at any confidence limit desired.
ORACLE: FLOAT(24)
NA Value: -1.0
Units: sxx,syy,szz,sxy,szx,syz - kilometers squared,
stt - seconds squared, stx,sty,stz - km/sec
Range: sxx, syy, szz, stt > 0.0
Name: stype
Relation: arrival
Description: Signal type. This single-character flag
indicates the event or signal type. The
following definitions hold:
l = local event
r = regional event
t = teleseismic event
m = mixed or multiple event
g = glitch (i.e., non-seismic
detection)
c = calibration activity upsets
the date
l,r, and t are supplied by the reporting
station, or as an output of post-detection
processing. g and c come from analyst comment
or from status bits from GDSN and RSTN data.
ORACLE: VARCHAR(1)
NA Value: - (a dash)
Range: {l | r | t | m | g | c}, lower case
Name: time
Relations: arrival, origin, sensor, siteaux, stassoc,
wfdisc
Description: Epoch time. Epochal time given as seconds and
fractions of a second since hour 0 January 1,
1970, and stored in a double precision
floating number. Refers to the relation data
object with which it is found. E.g., in
arrival - arrival time; in origin - origin

```
time; in wfdisc, - start time of data. Where date of historical events is known, time is set to the start time of that date; where the date of contemporary arrival measurements is known but no time is given, then the time attribute is set to the NA value. The doubleprecision floating point number allows 15 decimal digits. At 1 millisecond accuracy this is a range of \(3 * 104\) years. Where time is unknown, or prior to Feb. 10, 1653, set to the NA value.


Name: tshift

```

Description: Velocity model. This character string
identifies the velocity model of the earth
used to compute the travel times of seismic
phases. These are required for event location
(if phase is defining) or for computing
travel-time residuals.
ORACLE: VARCHAR(15)
NA Value: - (a dash)
Range: Any free-format string up to 15 characters
Name: wfid
Relation: wfdisc
Description: Waveform identifier. The key field is a
unique identifier for a segment of digital
waveform data.
ORACLE: NUMBER(8)
NA Value: NOT ALLOWED. A valid entry is required.
Range: wfid > 0
Name: wgt
Relation: assoc
Description: Location weight. This attribute gives the
final weight assigned to the allied arrival by
the location program. It is used primarily
for location programs that adaptively weight
data by their residuals.
ORACLE: FLOAT(24)
NA Value: -1.0
Range: 0.0 < wgt < 1.0
3.0 WAVEFORM FILE FORMAT
3.1. What Seismic Data is Stored

```

\subsection*{3.1.1. Storing Digital Waveform Data}
```

The digital waveform data samples are not stored within the database management system. They are stored in one or more separate operating system files -- "non-DBMS" files -- which

```
contain nothing but digital samples. The identifying information for a waveform segment is stored in the record (tuple) of the wfdisc relation that contains the name of the file with the waveform samples.

The Center database structure places few constraints on where a digital waveform segment is stored. It may be in an ordinary disk file, either by itself or with other segments stored in the same file. The waveform data may also be stored on magnetic tape, and is readily partitioned into tape files by station so that hardware tape positioning can be used to speed retrieval. Although the current practice at the Center is to place segments from only one channel into a single disk file, it is not a requirement of the database format. Placing more than one channel's data into a single file is convenient to reduce the number of open files in a program, but each segment must have its own index record so it should not be used to imitate fine grained multiplexing. By convention, the waveform file names end with ".w" (called the file suffix), and therefore the waveform files are often referred to as .w files. No other constraints are placed on waveform file names so people are free to choose any file prefix (the part of the file name preceding ".w") which is meaningful for their project.

To obtain flexibility nothing but data samples are stored in a .w file. The identifying information is stored in separate index records. The index records for .w files are maintained in the wfdisc relation. A similar relation called wftape is defined to index waveforms stored on magnetic tape, the only difference between the two relations being that the foff and adate fields of wfdisc are replaced by volnam, tpfile, and tpblck fields in wftape to specify the tape volume, tape file number, and block number within the tape file where the data is stored. For simplicity, the rest of this section will discuss only wfdisc records but, aside from the exception noted, it applies to wftape too.

Each wfdisc tuple describes a specific waveform segment and contains an id number in the chid field to designate detailed information on the station and instrumentation that recorded the trace. The length of the waveform segment is given in samples by the nsamp field, and the length in seconds is found by dividing nsamp by smprat, the sample rate field. The wfid field is a unique id number assigned to each original waveform segment; in practice this number is unique only within a coherent data set such as a group of waveforms being analyzed together. It would be useful for implementing a disk library of event or arrival templates, but in the general case waveforms are identified by the station name, channel name, and start time stored in the sta, chan, and time fields of the wfdisc record.

Five attributes (fields) in the wfdisc relation are needed to locate a waveform segment in a disk file and to determine the physical space it occupies in that file. This is commonly called "pointing to" a non-DBMS file. Thus a wfdisc record points to a waveform segment in a waveform
file, and several other relations point to other non-DBMS files. One of the five fields, dattyp (data type), also specifies the physical format (i.e., ASCII, VAX floating point, IEEE integer) used to represent the sample values in the .w file. In newer index relations, datsw (data switch) appears instead of dattyp. The data type implies the number of bytes occupied by a single sample; with that and the number of samples (nsamp) we can compute the number of bytes that a waveform segment occupies on disk. So we use two fields (dattyp and nsamp) to specify the space. Three others, dir, file, and foff, give the directory name, file name, and byte offset within the named file ("file offset" for short) where the waveform segment begins.

To further aid implementation of a waveform disk library, or a buffer of waveforms received in the last 2 or 3 weeks, adate and segtyp fields are included in the wfdisc relation. The former is the date the segment was last accessed or the date the segment was placed on disk, which could be used to remove inactive segments automatically. The latter, segment type, tells if the waveform file is "original", i.e., the waveform file was the initial copy placed in the library; "virtual", i.e., the wfdisc tuple references part of an original in the library; "segment", meaning it is a duplicate of part of the original; or "duplicate", where the waveform file is a complete copy of the original.

\subsection*{3.1.2. Representing Time}

Within the Center database, all times are stored as "epoch times". Since date is a useful search key, the Julian date appears in each relation for which time is an identifying attribute. The date and day relations are defined to help with date-based searches. Utility and application software will accept time and date formats which are more familiar to people.

Time is pervasive in seismology -- there are waveform sample times, phase arrival times, origin times, and so forth. In wfdisc records, the start time of a waveform segment is given, and a time field appears in many other relations in the Center database structure. All of the time values are stored as "epoch times", the number of seconds since hour 0 of January 1, 1970. Times before that are negative numbers, later times are positive numbers and, of course January 1, 1970 00:00:00 is represented as "0.0" in epoch time. Within the database system, time fields are stored and used as double precision floating point numbers. Time is right justified in a 15 character field in fixed point form with 3 decimal places (i.e., the FORTRAN format would be f15.3) when printed. Note that a double precision floating point number can accurately represent epoch times only for dates between roughly 300 years before and after 1970. A "null" value, -9999999999.999, is used for time outside the range that can be represented accurately. The
null value corresponds to Feb 10,1653 6:13:20.001. Null is also used when a contemporary date is known, but not the hour, minute or second. For historical events, if a date is known, time is set to the start time of the day if it is within the representable range.

Although it is redundant, the Julian date is also given in each relation that has a time field because date is a useful search key for seismic data. The date field in the wfdisc and other relations is presented as the year and day of year in a 7 character integer. For example, July 31, 1987 is stored as 1987212. Such a format is often denoted as "yyyyddd" or "yeardoy" to indicate that a 4 digit year is followed by a 3 digit day of year.

While epoch times and Julian dates are often computationally convenient when working with waveform segments, they are difficult for people to use, so the date and day relations are defined to facilitate conversions between the familiar representation of time ("human time" ) and epoch time or Julian date. Other relations are currently being tested to further simplify the conversion process within the scope of commercial database tools. Utility software also exists to do the conversion outside of a commercial database management system. In addition, Center software currently expects the familiar hh:mm:ss.sss form for command line arguments. At present, only Julian dates are accepted by command lines of most programs, but this will be changed soon so that a more familiar form may be used. When this is accomplished, the manual page for the command will be changed to reflect the improvement. Only one compact and unambiguous form will be required for the human date specification to speed implementation and elicit cooperation from all application software writers. Those using Center facilities will have library routines available to do the job. The required form is a single string of eight characters, with a 4-digit year, followed by 2-digit month, followed by a 2-digit day of month. This order is easily remembered since it places larger time units in higher order digits, and it has the nice property that, while readily understood by people, dated records can be placed in order with a standard numeric or alphanumeric sort utility. This format will be denoted as "yyyymmdd" or "yearmmdd". An example, again for July 31, 1987, is 19870731.

The date relation has five fields to show the Julian date for a given epoch time and also the year month and day. The names of the fields are date, time, year, mon, day, where mon and day are two digit integers, year is a four digit integer, and date and time are as just described. The date relation may be advantageous for a data set that spans no more than one year, or has a reasonably small number of dates involved, but has not been used in the current Center databases. To facilitate conversion to Julian date within a database management system, another relation, day, has been devised which has exactly 731 tuples (records). Each tuple has mon, mname, day, leap, doy fields for the month number, 3 character month abbreviation, day of month, boolean leap year flag (1 implies leap year, 0 non-leap year), and day of
year. Having a definite size and content, the day relation should be readily inserted in each database created within a database management system.


Figure 1. Summary of time utilities and formats.

\subsection*{4.0 INSTRUMENT RESPONSE FORMAT}

Instrument Response File Format

This memo describes the calibration and response file pointer fields in the tables as well as the first version (1.0) of the format for the response files.

The calibration information is stored in three different tables; wfdisc, sensor, and instrument. The wfdisc table contains the calib and calper fields which give the calibration in nm/count at the calibration period. This is usually the best estimate of the calibration at the time of recording and does not change as better estimates are obtained.

The sensor table is also linked to an instrument table through the inid field. The instrument table contains the nominal calibration factors in the ncalib and ncalper fields, pointers to the directory and file containing the instrument response, and a field giving the response type (e.g. paz, fap, fir, and mult for poles and zeros, frequency amplitude phase, finite impulse response, and multiple response types, respectively). Like the relationship between the wfdisc and sensor tables, several sensor entries can be linked to the same instrument.

This structure allows a small number of instrument responses and calibrations to be used for a great number of stations and waveforms.

By defining the various "calibration" values in units of nm/count at a specific period in the Center databases, the scaling of the response curves is explicitly defined. Thus, the responses stored in the external files need only preserve the true shape of the response curve, not the amplitude. The responses defined by poles and zeros, how- ever, do include a "normalization" factor in the format. It is included
primarily to remain consistent with the response information as it is received at the Center. Although the Center will include these normalization features in the response files, we will not vouch for their appropriateness. We strongly recommend using the calibration and calibration period values to scale the response curve properly.

The format allows the complete response to be given as a series of response groups that can be cascaded. Each response group can have a different format or representation including frequency, amplitude, phase; finite impulse response filters; and poles and zeros. Other representations can easily be added in the future. Modern instruments are composed of several different components, each with its own response. This format can mimic the actual configuration of the instrumentation. One of the benefits of this design is that the response shapes from standard instrument components can be kept separately and combined into complete response files as the need arises. In addition, one will be able to choose which parts of the complete response curve they wish to remove from their data. For example, it may be preferable not to remove the anti-alias filter when removing the instrument response from waveform data. Of course, responses are sometimes given as frequency, amplitude, phase triplets that represent the response of the entire system, and in these cases, the advantages of the cascading responses will not be realized.

In most cases, theoretical responses are given as poles and zeros, finite impulse response filters, or a combination of the two. Measured responses, on the other hand, are given as frequency, amplitude, phase triplets. The format labels each response group as either "theoretical" or "measured" which allows both types to be stored in the same file for retrieval as needed.

When frequency, amplitude, phase values are given, interpolation routines are usually used to fill in the missing points of the response curve. Unless points are included in the response file at very low and very high frequencies, extrapolation may be required to generate some of these points. The following policy will be adhered to concerning fap responses. When the fap values are "theoretical", amplitude and phase values will be given at frequencies of 0.000001 and 1000.0 Hz . For "measured" fap responses, only the values reported will be included in the response file. We suggest that the "theoretical" curve be used to fill in any response values at frequencies outside the "measured" band.

The format for the response curves is given below. The data will be stored in ASCII. In the version 1.0 format only three response groups are defined; paz, fap, and fir.

To get the response of a particular instrument, the calibration and calibration period values must be known. The response shape curve defined in the external file is adjusted so that its displacement value is one at the cali- bration period. The calibration value can then be used to scale the
curve to the appropriate value. If the displace- ment response is desired, this would be nm/count. Velocity or acceleration responses can also be obtained by multiply- ing the response curve by iw or -w2, respectively. The best estimate of the response at the time of the recording will be obtained using calib and calper in the wfdisc and sensor tables. The nominal response is found using ncalib and ncalper in the instrument table.

Table 1:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Response File Format} \\
\hline Line \# & Position & Field & Format & Description \\
\hline 1-L & 1-80 & - & a80 & General comments preceded by a \# \\
\hline L+1 & 1 & 1 & a1 & \# \\
\hline & 3-80 & 2 & a78 & ```
instrument type/description (KS36000,
GS-13, etc.)
``` \\
\hline \multicolumn{5}{|r|}{\(\overline{\text { Instrument }} \overline{\text { Response }}\) Group Using Poles and Zeros (paz)} \\
\hline L+2-K & 1-80 & 1 & a80 & comments (preceded by a "\#") \\
\hline \multirow[t]{5}{*}{K+1} & 1-12 & 1 & a12 & response source (theoretical or measured) \\
\hline & 14-15 & 2 & i2 & sequence number \\
\hline & 17-28 & 2 & a12 & description (instrument, anti-alias, etc.) \\
\hline & 30-35 & 3 & a6 & response type (fir, paz, fap, etc.) \\
\hline & 37-80 & 4 & a44 & author or source of information \\
\hline K+2 & - & 1 & f or e & normalization factor (A0) \\
\hline K+3 & 1-8 & 1 & i8 & number of poles \\
\hline K+4-N & - & 1-4 & 4(f or e) & complex pole and complex error \\
\hline N+1 & 1-8 & 1 & i8 & number of zeros \\
\hline N+2-M & - & 1-4 & 4(f or e) & complex zero and complex error \\
\hline \multicolumn{5}{|r|}{\(\overline{\text { Instrument }} \overline{\text { Response }} \overline{\text { Group Using Frequency, Amplitude, Phase (fap) }}\)} \\
\hline L+2-K & 1-80 & 1 & a80 & comments (preceded by a "\#") \\
\hline \(\overline{\mathrm{K}+1}\) & 1-12 & 1 & a12 & response source (theoretical or measured) \\
\hline & 14-15 & 2 & i2 & sequence number \\
\hline & 17-28 & 2 & a12 & description (instrument, anti-alias, etc.) \\
\hline
\end{tabular}

Example Response File (Fictional)
```


# 

# ** CAUTION ** CAUTION ** CAUTION **

# All responses in this file are displacement curves and have

# arbitrary scales. The scaling information required to use

# this file is contained in the calib (or ncalib) and calper

# (or ncalper) fields of the wfdisc (or instrument) tables.

# The calib value defines how many nm/count there are at the

# calper period. Scale appropriately.

# The convention followed for the Fourier transform is that the

# forward transform (from the time domain to the frequency domain)

# is defined with a negative exponent and the inverse transform

# (from the frequency domain to the time domain) is defined with

# a positive exponent. \# \# S-750 borehole instrument with GS1400

# amplifier

# 

# Response shapes with poles and zeros are defined by:

# 

```


21
\begin{tabular}{lrrrr}
21 & \(+.740 \mathrm{E}-04\) & 538.0 & 0.0 & 0.0 \\
0.1 & \(+.724 \mathrm{E}-03\) & 495.0 & 0.0 & 0.0 \\
0.15 & \(+.502 \mathrm{E}-02\) & 444.0 & 0.0 & 0.0 \\
0.2 & \(+.535 \mathrm{E}-01\) & 357.0 & 0.0 & 0.0 \\
0.3 & \(+.105 \mathrm{E}+00\) & 326.0 & 0.0 & 0.0 \\
0.4 & \(+.212 \mathrm{E}+00\) & 290.0 & 0.0 & 0.0 \\
0.5 & \(+.331 \mathrm{E}+00\) & 264.0 & 0.0 & 0.0 \\
0.6 & \(+.449 \mathrm{E}+00\) & 246.0 & 0.0 & 0.0 \\
0.7 & \(+.664 \mathrm{E}+00\) & 221.0 & 0.0 & 0.0 \\
0.8 & \(+.100 \mathrm{E}+01\) & 193.0 & 0.0 & 0.0 \\
1.0 & \(+.142 \mathrm{E}+01\) & 168.0 & 0.0 & 0.0 \\
1.2 & \(+.171 \mathrm{E}+01\) & 154.0 & 0.0 & 0.0 \\
1.4 & \(+.210 \mathrm{E}+01\) & 140.0 & 0.0 & 0.0 \\
1.7 & \(+.262 \mathrm{E}+01\) & 124.0 & 0.0 & 0.0 \\
2.0 & \(+.337 \mathrm{E}+01\) & 105.0 & 0.0 & 0.0 \\
2.5 & \(+.455 \mathrm{E}+01\) & 82.0 & 0.0 & 0.0 \\
3.3 & \(+.544 \mathrm{E}+01\) & 67.5 & 0.0 & 0.0 \\
4.0 & \(++667 \mathrm{E}+01\) & 48.3 & 0.0 & 0.0 \\
5.0 & + & 20.2 & 0.0 & 0.0 \\
8.0 & \(+.840 \mathrm{E}+01\) & +29.7 & 0.0 & 0.0 \\
10.0 & \(+.104 \mathrm{E}+02\) & \(+.650 \mathrm{E}+01\) & -146.0 & 0.0
\end{tabular}

\subsection*{5.0 GEOGRAPHIC/SEISMIC REGIONS}

The geographic and seismic regions utilized in the bulletins and the parameters on these CD-ROMS are based on the designations provided by Flinn, Engdahl and Hill (Bull. Seism. Soc. Amer. vol 64, pp. 771-992, 1974). The numbers are the same, while the names may have changed due to changing political circumstances (e.g., old RHODESIA = new ZIMBABWE).

\subsection*{6.0 GSETT BULLETIN FORMAT}

The "XB" message is used for event bulletins (FEB) and lists (IEL and CEL). All EIDCs should make every effort to compute all parameters in the bulletin. If parameters cannot be computed, or if no valid data are available, the fields should be left blank and the labels omitted. If the phase detections have slowness and azimuth measurements, the RES group should be presented. If the phase detections were associated in the original parameter message with a FOCUS group, that information should be presented with both the associated and unassociated phases. The \(X B\) message has the following format:
```

Line 1:Header
Header Identification: "XB01"

```
\begin{tabular}{|c|c|c|c|c|}
\hline 47-49 & & 10 List or Bull & letin & Type a3 IEL,CEL or FEB \\
\hline 51-52 & 11 & Version no. & & i2 Only for CEL \\
\hline 54-59 & 12 & Data day & \(3 i 2\) & YYMMDD \\
\hline 61-63 & 13 & Producing IDC & & a3 CNB,MOS,STO or WAS \\
\hline 65-70 & 14 & Day of creation & \(3 i 2\) & YYMMDD \\
\hline 72-75 & 15 & Time of creation & & 2 i 2 HHMM \\
\hline 76-80 & 16 & Reserved as & a5 & Blanks \\
\hline
\end{tabular}

Lines 3 - (\(n-1\)): Message text containing a number of events, station reports and one section for unassociated observations.
Line \(\mathrm{n}=\) "STOP"

\subsection*{6.1 Event Section}

Subheader first line:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Field & Name & & Format D & Description \\
\hline 3-6 & 1 & & a4 & 'DATE' & \\
\hline 10-14 & 2 & & a5 & 'EVENT' & \\
\hline 18-23 & 3 & & a6 & -ORIGIN' & \\
\hline 32-40 & 4 & & a9 & 'EPICENTER' & \\
\hline 46-50 & 5 & & a5 & 'DEPTH ' & \\
\hline 53-56 & 6 & & a4 & 'NOBS ' & \\
\hline 58-61 & 7 & & a4 & ' NOBS ' & \\
\hline 68-77 & 8 & & a10 & 'MAGNITUDES & \\
\hline
\end{tabular}

Subheader second line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 3-5 & 1 & a3 & 'IDC' & \\
\hline 11-13 & 2 & a3 & 'NO' & \\
\hline 19-22 & 3 & a4 & 'TIME' & \\
\hline 47-50 & 4 & a4 & \({ }^{-}(\mathrm{KM})^{\prime}\) & \\
\hline 53-55 & 5 & a3 & 'DEF' & \\
\hline 59-60 & 6 & a2 & 'LP' & \\
\hline 65-66 & 7 & a2 & 'MB' & \\
\hline 69-73 & 8 & a5 & 'MBAVE' & \\
\hline 77-78 & 9 & a2 & 'MS ' & \\
\hline
\end{tabular}

Subheader third line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 1-80 & 1 & & ' XXX & \\
\hline
\end{tabular}

Subheader fourth line:
\(===\)

The number of defining observations (field 9) is counted according to the definition of an observation given in Appendix B. Thus defining phases with the * mark count as one observation, and those with the \# mark count as three observations.

Subheader fifth line:

Subheader sixth line:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & & & Name & Format & Description \\
\hline 26-55 & 1 & & name & \[
\begin{aligned}
& \text { a30 } \\
& \text { geogr: }
\end{aligned}
\] & \begin{tabular}{l}
n-Engdahl \\
al region
\end{tabular} \\
\hline
\end{tabular}

Option comment lines:

Subheader seventh line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 1-80 & 1 & & ===. & \\
\hline
\end{tabular}

Subheader eighth line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 2-4 & 1 & a3 & 'STA' & \\
\hline 8-11 & 2 & a4 & 'DIST' & \\
\hline 14-15 & 3 & a2 & 'AZ ' & \\
\hline 21-25 & 4 & a5 & - PHASE & \\
\hline 38-41 & 5 & a4 & 'TIME' & \\
\hline 45-47 & 6 & a3 & 'RES ' & \\
\hline 54-57 & 7 & a4 & 'AMPL ' & \\
\hline 60-62 & 8 & a3 & 'PER' & \\
\hline 66-67 & 9 & a2 & 'MB' & \\
\hline 70-71 & 10 & & a2 & \\
\hline 73 & 11 & & a1 & \\
\hline 75-76 & 12 & & a2 & \\
\hline 78-80 & 13 & & a3 & \\
\hline
\end{tabular}

Subheader ninth line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 18-21 & 1 & a4 & 'REPT' & \\
\hline 26-28 & 2 & a3 & 'ASS ' & \\
\hline 45-47 & 3 & a3 & - (S) ' & \\
\hline 54-57 & 4 & a4 & \({ }^{-}(\mathrm{NM})^{\prime}\) & \\
\hline 60-62 & 5 & a3 & - (S) \({ }^{\prime}\) & \\
\hline
\end{tabular}

Subheader tenth line:
\begin{tabular}{|c|c|c|c|c|}
\hline Position & Field & Name & Format & Description \\
\hline 1-80 & 1 & & & \\
\hline
\end{tabular}

\subsection*{6.2 Station Report Section}

Station reports, defining and associated observations belonging to the event are listed here. One or more lines for each connected observation. All parameter values in the station report are the values used in the calculations.

Data, one or more lines per report:

The \# sign (Field 1) should be used as a defining mark if the phase has three defining observations.

For surface waves reports the format of field 10 is i5, field 11 is i8 and field 12 is i5.

For use of the comment codes in field 17, see Appendix F, Section F. 2 .
Station report, continuation. If no data are available, the following line is omitted:

If the input data has been changed or added by the operator, the operator comments are written on the following line(s). The comment should contain the original values.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Position & \multicolumn{2}{|l|}{Field} & Name & Form & & Description \\
\hline 1-2 & 1 & & mark & a2 & \({ }^{\prime}\left({ }^{\prime}\right.\) & \\
\hline 3-78 & 2 & & & a76 & Text & \\
\hline 79-80 & 3 & & mark & a2 & -)) ' & , optional \\
\hline
\end{tabular}

A report consists of a group of reported phases (e.g., P, \(S\) and Lg) reported by a given station as being from the same event.

For observations that are associated to an event only through other observations in the report, the associated phase code field and the time residual field will be left blank (and also the mb, MS and station category fields). The continuation line of the station report should not be given in these cases.

In the event sections, there should normally be only one report for each station associated to the event. If two or more reports are associated to the same event, they should be listed together with a blank line as a separator.

\subsection*{6.3. UNASSOCIATED OBSERVATIONS SECTION:}

In the FEB, the list of unassociated data is in two sections. The first section has a subheader as follows:

Subheader

These are the unassociated data for which an NDC has reported a location using a FOCUS line. The second section has the subheader identifier "OTHER UNASSOCIATED" and contains all other unassociated data.

Data lines:

\begin{tabular}{|c|c|c|c|c|c|}
\hline 65-68 & 11 & Reptd Rectili & & f4. 2 & 3-component \\
\hline 70-73 & 12 & Report number & i4 & & \\
\hline 74-80 & 13 & Reserved & a7 & Blank & \\
\hline
\end{tabular}

Use 'E', `I', 'Q' as onset prefix and 'C', 'D', 'U', 'R', 'CU', 'CR', 'DU', 'DR' as onset suffix in field 2, Phase code. (See definition in Annex D1).

Report numbers are used to denote groups of reported phases, such as \(P\), \(S\) and Lg. These numbers will be internal database numbers and as such will be different for each EIDC. They should however be unique for a given EIDC and observations belonging to the same report should have the same number.

Optional line with supplementary information if reported by the station.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Position & \multicolumn{2}{|l|}{Field} & Name & \multicolumn{2}{|l|}{Format} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Description}} \\
\hline 1 & 1 & & nuation & a1 & - + & & \\
\hline 3-5 & 2 & & ude ide & & a3 & 'LAT' & \\
\hline 6-11 & 3 & & ude & f6. 2 & & & \\
\hline 13-15 & 4 & & tude id & r & a3 & 'LON ' & \\
\hline 16-22 & 5 & & tude & f7. 2 & & & \\
\hline 24-25 & 6 & & n time & a2 & 'OT' & & \\
\hline 26-33 & 7 & & n time & 2i2,f & 4.1 & & \\
\hline 35-36 & 8 & & entifie & a2 & ' XA' & & \\
\hline 38-42 & 9 & & of maxi tude ive arr & \begin{tabular}{l}
\[
\mathrm{f} 5.1
\] \\
me
\end{tabular} & & & \\
\hline 44-45 & 10 & & Body wa & . id. & a2 & 'MB ' & \\
\hline 46-48 & 11 & & Body wa & nitude & & f 3.1 & \\
\hline 50-51 & 12 & & Surface tude id & & a2 & 'MS ' & \\
\hline 52-54 & 13 & & Surface & mag. & f3. 1 & & \\
\hline 56-57 & 14 & & Local m & de id. & & a2 & 'ML' \\
\hline 58-60 & 15 & & Local m & de & f 3.1 & & \\
\hline 62-78 & 16 & & Comment & & a17 & Text & \\
\hline
\end{tabular}

Optional line:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Position & \multicolumn{2}{|l|}{Field} & Name & Form & & Description \\
\hline 1-2 & 1 & & mark & a2 & '(\({ }^{\prime}\) & \\
\hline 3-78 & 2 & & & a 76 & Text & \\
\hline 79-80 & 3 & & mark & a2 & -)) ' & \\
\hline
\end{tabular}

February 1992
This file contains information on inaccuracies and corrections to the data present on these CD-ROM's which were reported by the NDC's or discovered during analysis. Comments that were made by the NDC are identified by being
placed in quotes. These comments made by NDCs are simply comments, and had no
effect on the data on the CD-ROM (unless otherwise noted).
NDC Data Time Period Station Problem Description-Correction
Channel
\begin{tabular}{|c|c|c|c|}
\hline AUS & Inst & ASAR & \begin{tabular}{l}
Two waveforms sent sent on 1991132 have a calib of .08, all others have one of . 005 . The calibs for these waveforms have been changed to . 08 \(\mathrm{nm} /\) count in the all WFDISC files and the INSTRUMENT file. \\
The instrument response supplied for this station was in FAP format, and contains no values for phase.
\end{tabular} \\
\hline & Inst & WRA & The instrument response supplied for this station does not include an anti-aliasing filter. \\
\hline & Wave & CTA & \(\mathrm{BN}, \mathrm{BE}\) are sometimes reported as SN,SE. All SZ,SE,SN channel names for CTA have been changed to \(\mathrm{BZ}, \mathrm{BE}, \mathrm{BN}\) in all WFDISC files. \\
\hline & Wave & STK & The N and E components were reported as \(S N, S E\), while the \(Z\) component was reported as BZ . All \(S Z, S E, S N\) channel names for STK have been changed to \(B Z, B E, B N\) in all WFDISC files. \\
\hline & Wave & MAW & \(\mathrm{BN}, \mathrm{BE}\) are sometimes reported as SN,SE. BN, BE are sometimes reported as SN,SE. All SZ,SE,SN channel names for MAW have been changed to \(B Z, B E, B N\) \\
\hline
\end{tabular}
in all WFDISC files.

is . \(006 \mathrm{~nm} /\) count @ 1 Hz .
The response curve plotted in the Sourcebook is incorrect. With a calibration value of .006 at 1 Hz , the response curve should have a value of around 166 counts/nm at 1 Hz . The response in the Sourcebook has somewhere between 7 and 8 counts/nm at 1 Hz .

Param
All Data Days "Erroneous reporting of calibration resulted in incorrect amplitude. Azimuth and slowness reported in comment fields."

Note: this problem has been resolved in the ARRIVAL files in the NDCPARM directory, but not in the WASCEL directory, since new parameters were sent by CZK after the experiment.

Wave All Data Days "Erroneous reporting of calibration resulted in incorrect sensitivity."

Note: this problem has been resolved in all the WFDISC files and the INSTRUMENT file, since new waveforms were sent by CZK after the experiment.

DEU Inst
GRA1 We had to convert the response that was supplied in the XW01 from velocity to displacement. CRP/190 states that they should always be in terms of ground displacement (see CRP/190, pg D48). This change is reflected in the GRA1_BB. 1 response file.

We had to convert the calibration value to displacement (divided by 2 * PI * (1 / calibration
period)). In the original XWO1
messages, the calibration values were not identified as being in units of (\(\mathrm{nm} / \mathrm{s}\)) / cnt. This change has been made in all of the WFDISC files and the INSTRUMENT file.

GEAO Several waveforms on 1991112
were reported with an incorrect calibration value of \(.005999 \mathrm{~nm} /\) count @ 1 Hz . These were changed to have the correct value of .008387 nm/count @ 1 Hz in all the WFDISC files and the INSTRUMENT file.

GEC2 We had to convert the response that was supplied in the XW01 from velocity to displacement. CRP/190 states that they should always be in terms of ground displacement (see CRP/190, pg D48). This change is reflected in the response file GEC2_SP.1.

GEC2 The instrument response for this station does not include an anti-aliasing filter.

P/W GRFB The elevation was reported in units of kilometers rather than meters. This has been fixed in the SITE file.

P/W All Data Days GEAO All waveform data of the GERESS array have wrong coordinates in the header. The published coordinates in the Sourcebook are correct. In the GSETT-2 period the following two stations had been used as references. The correct coordinates are:

GEAO 13.70188333 E (lat)
48.83680472 N (lon)
1027.55 m (elevation)

GEC2 13.70155917 E (lat)
48.84510611 N (lon)
1132.46 m (elevation)

For the same reason all
reported GERESS (NDC)
epicenters in the STASSOC
files data would need a small correction: The latitudes must be shifted 0.025 deg to the North. The longitudes must be shifted 0.132 deg to the East. This change has not been made in the STASSOC files in either the WASCEL or NDCPARM directories.

This may result in incorrect origin and origin error determination, as well as errors in time residuals in the WASCEL tables and in the bulletins in the GSEBULL directories. The information in the site table for these sites include the correct location. The (incorrect) locations used during the experiment are available as the station name plus the letter 'x'(eg GEAOX). Note however that NO changes have been made to the station locations in the STASSOC files or to the WASIDC locations in the WASCEL directory.
\begin{tabular}{|c|c|c|c|}
\hline ESP & Param & All DataDay & yCC LP All the LP Amplitude reported in \(n M\) instead of \(u M\). Corrected messages were sent, and the correct amplitudes can be found in the ARRIVAL files in the NDCPARM directory, however, the amplitudes in the WASCEL directory remain unchanged. \\
\hline FIN & Inst & & No response information was supplied in the XW01 messages for theses stations, although we did receive these through e-mail after the experiment. These response files can be found in the RESPONSE directory. \\
\hline FRA & Inst & LOR \(\begin{array}{r}\text { T } \\ \\ \\ \end{array}\) & The calibration factor reported in the WID1 sections \\
\hline
\end{tabular}
of XWO1 messages was in units
of (nm/s)/count, not nm/count
as was indicated. The correct calibration value for the sz channel of LOR is . 097148 nm /count. This has been updated in all WFDISC files and the INSTRUMENT file.

GBR Inst

IND Inst

EKA The instrument response for this station does not include an anti-aliasing filter.

GBA The instrument response for this station does not include an anti-aliasing filter.

GBA The start time for the waveform segments are generally misreported as the time of the initial phase arrival contained within the segment. This makes the segment start time approximately 30 seconds later.

Note: No change has been made in the WFDISC file, due to the lack of precise start time of the waveforms.
Inst AQU
\begin{tabular}{l}
The calibration factor \\
reported in the WID1 sections \\
of xW01 messages was
\end{tabular}
incorrect. The correct value
is . 1355014 nm/count at 1 Hz,

which was sent to us by ITA
after the experiment. This has
been changed in all the WFDISC
files and the INSTRUMENT file.

P/W All Data Days

All waveform data for AQU have the incorret longitude in the header. The correct location for AQU is latitude 42.3539, longitude 13.4031. This change has been made to the SITE file. The incorrect location of the station remains in the SITE file under the station name AQUX. This may result in incorrect origin and origin error determination, as well

\begin{tabular}{|c|c|}
\hline & report is "LPZ LR140509". "LR0509" was associated as "LR130509" in "12:-15:58.4 COLORADO" in FEB." \\
\hline & Note: The correct time has been put in the ARRIVAL file in the NDCPARM directory, however, the incorrect value remains in the ARRIVAL file in the WASCEL directory. \\
\hline \multirow[t]{2}{*}{12May} & \begin{tabular}{l}
MAT "Add the following description: \\
MAT IPC123923.9 \\
SLO8.17 AZ143 \\
S4857.0 PCP3936.0 SSS5708.0 \\
LPZ LR130000.0"
\end{tabular} \\
\hline & Note: This report has been put in the ARRIVAL file in the NDCPARM directory, however, it does not appear in the ARRIVAL file in the WASCEL directory. \\
\hline \multirow[t]{2}{*}{20 May} & MAT "Correct an hour entry between "LPZ LR" and "0300" The correct report is "LPZ LR170300". "LR030-0" was misassociated as "LR160300" in FEB." \\
\hline & Note: The correct time has been put in the ARRIVAL file in the NDCPARM directory, however, the incorrect value remains in the ARRIVAL file in the WASCEL directory. \\
\hline \multirow[t]{2}{*}{23 MAY} & MAT "Correct an hour entry between "SS" and "06-15.0" The correct report is "SS070615.0". "SS0615.0" was misassociated as "SS060615.0" in FEB." \\
\hline & Note: The correct time has been put in the ARRIVAL file in the NDCPARM directory, however, the incorrect value remains in the ARRIVAL file in \\
\hline
\end{tabular}

updated to reflect that.

responses to requests. All of the other waveforms were reported with a calibration of \(.009 \mathrm{~nm} /\) count. All waveforms from these stations with a calibration value of 1 nm/count were updated in the WFDISC files to have the correct value of . 009 nm/count.

> All The instrument responses for the USA stations do not include anti-aliasing filters.
\begin{tabular}{|c|c|c|}
\hline P/W & & The elevations reported in XW messages are not reliable. The values in the SITE file were obtained from the Sourcebook. \\
\hline P/W & 22Apr-31May & ```
BKS sp "All BKS short-period amplitudes
 before 2000 hour Data Day 151 are
 too large; they should be
 multiplied by 0.009. Later
 amplitudes should be correct."
``` \\
\hline & & Note: This change has been made to all relevant WFDISC files and to the INSTRUMENT file, as well as the ARRIVAL files in the NDCPARM directory. The change has not been made in the ARRIVAL files in the WASCEL directory. \\
\hline P/W & All Data Days & BLA "Unspecified timing problems were reported." \\
\hline P/W & All Data Days & PFO "Back azimuths were off by 90 degrees due to orientation problem with horiz. channels." \\
\hline Inst & LSZ & \begin{tabular}{l}
No calibration data was \\
supplied in the WID1 section of the XWO1 messages for LSZ, so we are unable to produce a true response for LSZ.
\end{tabular} \\
\hline
\end{tabular}

NAMES AND ADDRESSES OF GSETT-2 PARTICIPANTS

August 1991
This file contains the names and addresses of the coordinators at the Experimental International and National Data Centers at the time of GSETT-2. Also given are the names and addresses to which specific questions about data centers and the data for which they are responsible can be forwarded (Section 3.0) .
1.0 COORDINATORS AT INTERNATIONAL DATACENTERS

AUSTRALIA
Dr. Ken Muirhead
Australian Seismological Centre
Bureau of Mineral Resources
G.P.O. Box 378

Canberra, ACT. 2601
Tel.: \(\quad+6162499481\) (b) +6162542996 (h) Telex: 79062229 (bmrcom) Telefax: +61 62480913 Electronic mail: INTERNET muirhead@numbat.css.gov

SWEDEN
Ms. Eva Johannisson
National Defence Research Establishment Box 1165
S-581 11 Linkoping
Tel.: +46 86631500 Telex:2401 8155139 (idcsei s)
Telefax: +46 86609192
Electronic Mail: PSI\%24037153022::EVA

USSR
Dr. Oleg Starovoit
Institute of Physics of the Earth
Academy of Sciences of the USSR
Lenin St., 90
Obninsk 249020
Tel.: (095)2726872 Telex: 871412639 (cso su)

USA
Ms. Ann U. Kerr
IGPP, 0225
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093
Tel.: +1 619-534-2103
Telex: 230556557 (seismic center)
Telefax: +1 619-534-5332
Electronic Mail: kerr@gsehub.css.gov

\section*{ARGENTINA}
```

Ing. N. Puebla
Jefe Departamento Laboratorio Sismologico
Instituto Nacional de Prevencion Sismica
Roger Balet Norte 47
5400-San Juan
Tel.: 0054 64230163 Telex: 390 59129 (INPRE AR)
Telefax: 054 64 231578

```
AUSTRALIA
Dr. Spiro Spiliopolous
    Australian Seismological Centre
    Bureau of Mineral Resources
    G.P.O. Box 378
    Canberra, A.C.T. 2601
    Tel.: +61 \(62499696(\mathrm{~b}) \quad+6162548422(\mathrm{~h})\)
    Telex: 79062229 (BMRCOM) Telefax: +61 62480913
    EMail: spiro@numbat.css.gov
AUSTRIA
Dr. Gerald Duma
    Central Institute for Meteorology and Geodynamics
    Hohe Warte 38
    A-1190 Vienna
    Tel.: +43 222364453 Ext. 2503 Telex: 847131837 (metw a)
    Telefax: +43 2223691233 (ZA MET WIEN)

BELGIUM
```

M. De Becker
Observatoire Royal de Belgique
3, Avenue Circulaire
1180 Bruxelles
Tel.: +32 2 373 0211 Telex: 21 565(obsbel b)
Email: seismo@astro.oma.be

```
BULGARIA
Dr. Alexander Milev
    Seismological Center
    Geophysical Institute, B.A.S.
    Acad. G. Bonohev str., block 3
    Sofia 1113
    Tel.: 700293 or 700328
    Telex: 86522632 (SEISMO BG)

CANADA
Dr. Robert North

\section*{Geophysics Division}

Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario K1A 0Y3
Tel.: +1 6139925038
Telex: 3890533117 (emar ott)
Electronic mail address:
PSI \% 30208580882:: NORTH

COOK ISLANDS
Mr. Roro Taia
Meteorological Service, Rarotonga
c/o - Dr. Warwick Smith
DSIR Geology and Geophysics
P.O. Box 1320

Wellington, New Zealand
Tel.: +64 4738208 Telefax: +64 4710977
Electronic Mail address:
INTERNET: SRWGGSE@WNV.DSIR.GOVT.NZ

CZECH and SLOVAK FEDERAL REPUBLIC
Dr. Petr Firbas, CSc
Geofyzika Brno
Jecna 29a
P.O. Box 62

61246 Brno
Czechoslovakia
Tel.: +425772110 Telex: 62512 (ugfbo c)
Fax: +42 5772137

DENMARK
Mr. Jorgen Hjelme
KMS
Office of Seismology
Rentemestervej 8
DK-2400 Copenhagen NV
Tel.: +45 35875243 Telex: 85515184 (seismo dk)
Fax: +45 35875052

EGYPT
Dr. Amin I. Hussein
National Research Institute of Astronomy and Geophysics Helwan
Tel.: +002 \(02782683+002023501094\)
Telex: 92793070 (hiag un) or 92793069 (asst un)

FEDERAL REPUBLIC OF GERMANY
Mr. Manfred Henger
Federal Institute for Geosciences and Natural Resources
Stilleweg 2
P. O. Box 510153

D-3000 Hannover 51
Federal Republic of Germany
Tel.: 49511643 313(3 Telex: 8419230372 bgrf ha d)
Telefax: 495116432304
Electronic mail address:
DFN (X.400): C=d;ADMD=dbp; PRMD=bgr;OU=gatel;
\(\mathrm{S}=\) henger;
DFN (RFC822) : henger@gatel.bgr.dbp.de
FINLAND
Mr. Seppo Nurminen
Institute of Seismology
University of Helsinki
Et. Hesperiankatu 4

FRANCE
Dr. B. Massinon
CEA/LDG
B. P. 12

91680 Bruyeres-le-Chatel
Tel.: 33164905753 Telex: 270746
Telefax: 33164904949

GHANA
Dr. G.O. Kesse, Director
Geological Survey
Ministry Branch Post Office
P.O. Box M. 80 Accra

GREECE
Professor J. Drakipoulos
National Observatory of Athens Seismological Institute
P.O. Box 20048 GR-11810 - Athens

HUNGARY
Mr. Laszlo Toth
Seismological Observatory
Hungarian Academy of Sciences
H-1112 Budapest, Meredek 18.
Tel.: (361) 668475

INDIA
Mr. Vijai Kumar
Scientific Officer (SF)
Seismology Section
Bhabha Atomic Research Centre
Bombay-400 085
Tel.: +91 (22) 5512115 +91 (22) 5514910 Ext. 2350
Telefax: +91 (22) 5560750 E mail address: dhekne@shakti.ernet.in
IRAN (Islamic Republic Of)
Dr. Mohsen Ghafory-Ashtiany
President of International Institute of Earthquake Engineering and Seismology (IIEES)
PO Box 19395/3913
Tehran
Tel.: +98 21275484
Telefax: +98 214378732

ITALY
Dr. Rodolfo Console
Instituto Nazionale di Geofisica
Via di Villa Ricotti, 42
00161 Roma
Tel.: +39 64210285 Telefax: +39 6429040
Electronic mail address: PSI\%022226500064::CONSOLE
```

JAPAN
Mr. Osamu Kamigaichi
Japan Meteorolgical Agency
3-4, 1-Chome, Ohtemachi
Chiyoda-ku, Tokyo, 100
Tel:+81 33 211 8684 Telefax: +81 33 212 3648

```

JORDAN
Dr. Zuhair El-Isa The University of Jordan, Amman

KENYA
Mr. Steve Jesse Gaciri
```

 Chairman, Dept of Geology, University of Nairobi
    ```
    PO Box 30197
    Nairobi

MEXICO
Dr. D.A. Novelo-Casanova, Head National Seismograph Network, Instituto de Geofisica Ciudad Universitaria Del Coyoacan 04510, Mexico D.F.

NETHERLANDS
Dr. H.W. Haak
Division of Seismology
Royal Netherlands Meteorological Institute
P.O. Box 201

3730 AE DeBilt
Tel.: +31 30206341 Telefax: +31 30201364

NEW ZEALAND
Dr. Warwick Smith
DSIR Geology and Geophysics
P.O. Box 1320, Wellington

Tel.: +64 4738208
Telefax: +64 4710977
Electronic mail address: INTERNET: SRWGGSE@WNV.DSIR.GOVT.NZ

NIGERIA
Dr. S.B. Ojo
Department of Physics Ahmadu Bello University, Zaria (A.B.U.)

NORWAY
Mr. Rune Paulsen
NORSAR
P.O. Box 51

N-2007 Kjeller
Tel.: +476817121
Telex: 85678147 (kcin \(n\) )
Telefax: +47 6818719
Electronic mail address: INTERNET: rune@elg.norsar.no.

\section*{PAKISTAN}
M. Daud Shah

Micro Seismic Study Programme
P.O. Nilore, Islamabad

Tel: 9251840260
PEOPLES REPUBLIC OF CHINA
Prof. Xu Shaoxie
Institute of Geophysics, State Seismological Bureau
5, Minzuxueyuan Nanlu, Haidian District,
Beijing 100081, PR China
Cable:3808
Tel.: (861) 8417744 Ext. 3832 Telefax:
(861) 841-5372

PERU
Dr. L. Ocola
Instituto Geofisico Del Peru
Apartado 3747
Lima 100 Tele: +14 370244
POLAND
Dr. Andrzej Kijko
Polish Academy of Sciences
Institute of Geophysics
PO Box 155
01-452 Warsaw, ul. Ks. Janusza 64
Tel.: (48) (22) 379287 Telefax: \(482237 \quad 0522\)
ROMANIA
Mrs. Victoria Oancea
Institute for Earth Physics
P.O. Box MG-2

Bucharest
Tel.: 400897620 or 400803890
-or-
Victoria Oancea
Bd. N. Titulescu, no. 51-59 Block 11B
Floor 7, ap. 33 Sector 1
Bucharest
Tel.: 597058
SPAIN
Carmen Lopez
Jose M. Tejedor
Instituto Geografico Nacional
c. General Ibanez Ibero 3

28003 Madrid
Tel.: (341) 5333800 Ext. 529 Ext. 379

SWEDEN
Mr. Nils-Olov Bergkvist National Defence Research Establishment Department 2 S-172 90 Sundbyberg Tel.: +46 86631500 Telefax: +46 86675559 Electronic mail address:

Dr. Urs Kradolfer
Swiss Seismological Service
Institute of Geophysics
ETH-Hoenggerberg
CH-8093 Zurich
Tel.: +41 13772656 (or 2605)
Telex: 823480 (eheb ch) Telefax: +41 13711864

TURKEY
Dr. S. Balamir Ucer
Kandilli Observatory
Bogazici University
81220 Cengelkoy
Istanbul
Tel.: \(\quad 90-1-3320242\) 90-1-332 0240 90-1-332 0241 Telex: 82126411 (BOUN TR)
Telefax: 9013321711

USSR
Dr. Igor Chernoby
Institute of Physics of the Earth
Academy of Sciences of the USSR
Lenin St., 90 Obninsk 249020
Tel.: (095)2726872

UK
Ms. Hilary Trodd
PE-MOD Blacknest
Brimpton,
Reading,
Berks. RG7 4RS, England
Tel.: (0) +44 734814111 Ext. 7260
Telefax: (0) +44 734815328

USA
Mr. Donald L. Springer
L.L.N.L, L-205
P.O. Box 808

Livermore, Calif. 94550
Tel.: 4154223520 Telefax: 4154227315
Electronic mail address:
INTERNET springer@gsehub.css.gov

ZAMBIA
Daniel K. Lombe
Zambian Seismological Data Center
Geological Survey Department
P.O. Box 50135

Lusaka
Tel.: + 227947
```

ARGENTINA
Jefe Departamento Investigacion
Instituto Nacional de Prevencion Sismica
Roger Balet Norte 47
5400-San Juan
Contact: Mr. N. Puebla 0054 64230163
Mr. Jose Gargiulo Telefax: 054 64 231578
AUSTRALIA
Australian Seismological Centre
Bureau of Mineral Resources
G.P.O. Box 378
Canberra, A.C.T. 2601
Contact: Dr. Ken Muirhead +61 6 249 9481
Dr. Spiro Spiliopolous +61 6 249 9694 (G)
+61 6 254 8422 (H) Telefax: +61 6248 0913
AUSTRIA
Central Institute for Meteorology and Geodynamics
Hohe Warte 38
A-1190 Vienna
Contacts: Dr. G. Kaindl +43 222 364453, ext. 2602
Dr. G Duma 2503
St. Radman 2506 Telefax: +43 222 3691233(za met wien)
BELGIUM
Observatoire Royal de Belgique
3, Avenue Circulaire
1180 Bruxelles
Contact: Mrs. M. De Becker/Dr. R. Verbeiren +32 2 373 02 11
BULGARIA
Seismological Center
Geophysical Institute, B.A.S.
Acad. G. Bonoev str., block 3
Sofia 1113
Contacts: Dr. E. Levy 700293 Dr. Al. Milev 700328
CANADA Geophysics Division
Geological Survey of Canada
1 Observatory Crescent
Ottawa, Ontario K1A 0Y3
Contacts: Michael Andrew +1 613 995 5584
Robert North +1 613 992 5038
CZECH and SLOVAK
FEDERAL REPUBLIC
Geofyzika Brno
Jecna 29a
P.O. Box 62
CS - 612 46 Brno
Czechoslovakia
Contact: Dr. Petr Firbas, CSc +42 5 772110

```

DENMARK
KMS
Office of Seismology
Rentemesterfej 8
DK-2400 Copenhagen NV
Tel.: +45 35875050
Fax: +45 35875051 and +4535875052
Contact: Jørgen Hjelme +45 35875243
Erik Hjortenberg +45 35875242
Telex: 85515184 (seismo dk)
EGYPT
National Research Institute of Astronomy \& Geophysics
Helwan
Contact: Prof. R. M. Kebeasy +002 02782683
\(+002023501094\)
FEDERAL REPUBLIC
OF GERMANY
Federal Institute for Geosciences and
Natural Resources
Stilleweg 2
D 3000 Hannover 51
Contacts: Dr. Nik Klever +49511 6433141
Telex: 8419230372 bgrf ha d
Telefax: +495116432304
FINLAND
Institute of Seismology
University of Helsinki
Et. Hesperiankatu 4
SF-00100 Helsinki
Contacts: Marja Uski +358 01911
Pekka Teikari +358 01911
Telex: \(857121199(\) seism sf)
Telefax: +358 01917288
GHANA
Dr. G.O. Kesse, Director
Geological Survey
Ministry Branch Post Office
P.O. Box M. 80

Accra
GREECE
Professor J. Drakipoulos
National Observatory of Athens
Seismological Institute
P.O. Box 20048

GR-11810 - Athens

HUNGARY
Seismological Observatory
Hungarian Academy of Sciences
H-1112 Budapest, Meredek 18
Contact: Peter Monus 361668475
Telex: 861226032 (geosz h)

Bhabha Atomic Research Centre
Seismology Section
Bombay-400 085
Contacts: Mr. Vijai Kumar
Scientific Officer (SF) +91 (22) 5512115
+91 (22) 5514910 Ext. 2350
Telefax +91 (22) 5560750
IRAN (Islamic Republic Of)
Dr. Mohsen Ghafory-Ashtiany
President of International Institute of Earthquake Engineering and Seismology (IIEES)
PO Box 19395/3913
Tehran
Tel.: +98 21275484 Telefax: +98 214378732

ITALY
Instituto Nazionale di Geofisica
Via di Villa Ricotti 42
00161 Roma
Contacts: Franco Mele +39 6 4210, Ext. 260 Seismological Centre +39 64271167

JAPAN
Japan Meteorolgical Agency
3-4, 1-Chome, Ohtemachi
Chiyoda-ku, Tokyo, Japan 100
Contact: Osamu Kamigaichi +81 332118684
Toyomi Sakamoto +81 332380480
Keiji Nakai +81332951521
Telex: Tokyo 7812222163 (mettok j)
Telefax: +81 332123684

JORDAN
Dr. Zuhair El-Isa
The University of Jordan
Amman

KENYA
Mr. Steve Jesse Gaciri
Chairman, Dept of Geology
University of Nairobi
PO Box 30197 Nairobi
MEXICO
Dr. D.A. Novelo-Casanova, Head
National Seismograph Network
Instituto de Geofisica
Ciudad Universitaria
Del Coyoacan 04510
Mexico D.F.

NETHERLANDS
Royal Netherlands Meteorological Institute
P.O. Box 201

3730 AE DeBilt
```

 Contact: Ir. J.H. Rietman +31 30 206335
 Telex: 844 47096(knmi nl)
 Telefax: +31 30 201364
 NEW ZEALAND
Geophysics Division
Department of Scientific and Industrial Research
P. O. Box 1320
Wellington
Contacts: Warwick Smith +64 4 738208
Stephen White +64 4 727855

```
NIGERIA
    Dr. S.B. Ojo
    Department of Physics
    Ahmadu Bello University
    Zaria (A.B.U.)
NORWAY
    NORSAR
    P.O. Box 51
    N-2007 Kjeller
    Contacts Rune Paulsen +476817121
        Vidar Dohli \(\quad+476817121\)
    Telefax: +476818719
PAKISTAN
    M. Daud Shah
    Micro Seismic Study Programme
    P.O. Nilore
    Islamabad
    Tel: 9251840260 Telex: 5725 ATCOM PK
PEOPLES REPUPLIC OF CHINA
    Institute of Geophysics,
    State Seismological Bureau
    5, Minzuxueyuan Nanlu, Haidian District,
    Beijing 100081, PR China
    Contact: Prof. Xu Shaoxie (861) 8417744

PERU
Dr. L. Ocola, Eng. R. Colqui +14370244
Instituto Geofisico Del Peru
Apartado 3747 Lima 100
POLAND
Polish Academy of Sciences
Institute of Geophysics
PO Box 155
01-452 Warsaw, ul. Ks. Janusza 64
Contact: Dr. Andrzej Kijko +48 22379287
Telefax: 4822370522

ROMANIA
Institute for Earth Physics
PO Box MG-2
Bucharest

Contact: Mrs. Victoria Oancea \(\quad+400897620\)
Dr. Mihnea Oncescu \(\quad+400887620\)

Mr. Cezar Trifu \(\quad+400897620\)

SPAIN
Instituto Geografico Nacional
c. General Ibanez Ibero 3

28003 Madrid
Contact: Sr. Jose M. Tejedor 3415333800 Ext. 529
SWEDEN
National Defence Research Establishment
Department 2
S-102 54 Stockholm
Contacts: Matts Gustavsson (NDC) +46 86631500
Anders Eriksson (EIDC) +46 86631500
Peder Johansson (EIDC) +46 86631500
Astrid Persson (EIDC) +46 86631500
National Defence Research Establishment
Department 3
P.O. Box 1165

S-581 11 Linkoping
Contacts: Olof Berglund (EIDC) +46 13118246
SWITZERLAND
Swiss Seismological Service
Institute of Geophysics
ETH-Hoenggerberg
CH-8093 Zurich
Contacts: Dr. Urs Kradolfer +41 1 3772656
Dr. Manfred Baer +41 13772627
Telefax: +41 13711864

TURKEY
Kandilli Observatory
Bogazici University
81220 Cengelkoy
Istanbul
Contact: S. Balamir Ucer +90 1 3320242 +90 \(143320240 \quad+9013320141\)
Telefax: 9013321711

USSR
Institute of Physics of the Earth
Academy of Sciences of the USSR
Lenin St., 90
Obninsk 249020
Contact: Dr. Igor Chernoby 0952726872

UK
PE-MOD, Blacknest
Brimpton
Reading
Berks, RG7 4RS, England
Contacts: Hilary Trodd \(\quad+44734814111\) Ext 7260
David Jobson-Scott +44 734814111 Ext 5214
)
Telefax: +44 734815328
```

USA
Center for Seismic Studies
1300 N. 17th Street, Suite 1450
Arlington, VA 22209
Contacts: Steve Bratt (EIDC) +1 703 276 7900
David Comay (GSEHUB) +1 703 276 7900
John Coyne (NDC) +1 703 276 7900
Telex: 230 556557(seismic center)
230 154250389(seismo)
Telefax: 1 703 243 8950
ZAMBIA
Zambian Seismological Data Center Geological Survey Department P.O. Box 50135
Lusaka
Contacts: Nick Money +260 1250174
Joses Kanyanta +260 1212553 Elijah Fumbo +260 1212553
Telex: 90240107 (geology za)

```
```

