<u>Nabelek-Gorda-YR2 (2013-2014)</u> LC4x4 Generalized Response and Calibration Factor

These calculations are for the generalized case and assume the signal is in the sensor frequency range giving a flat response. Frequency response ranges are indicated.

SENSOR RESPONSE INFO:

For the Differential Pressure Gauge (DPG) sensitivity:

Using measurements from strain gauge full scale outputs, the average is about 57 mv/7e3 PA. (FSO is 75e-3V/7e3PA). According to Cox *et al* there is a mechanical attenuation factor due to the compressibility of the oil and the compliance of the chamber. They estimate this as 0.86. Willoughby *et al* say they measured the response and deduced this factor as 0.924. Using a value of 0.9 is suggested until a better value can be determined. Thus the STAGE 1 gain should be 5.7e-2*0.9/7e3 or:

S(DPG) = 7.3 μV/Pa -or- (7.3e-6 V/Pa)

flat response: 0.002 Hz (500 sec) to ~30+ Hz

Frequency response information:

Parameter	Nominal Value	Units
Zeros (1)	0	Rad/s
Poles (1)*	-0.012568	Rad/s
Normalization	1	
Normalization Frequency	0.3	Hz

* Single Pole @ (1/-79.57).

For the Trillium-240-OBS seismometer sensitivity:

the manufacturer quotes 1196.5 V*s/m over +/-20V for a full differential signal. SIO-4x4-LP uses only a single-sided input to the A/D, effectively halving the sensitivity, thus:

S(T240-ss) = 598.25 V/m/s

flat response: 0.004167 Hz (240 sec) to 35 Hz

Trillium 240 OBS Seismometer Frequency response information: (From Trillium 240 OBS User Guide - page 10)

Table 3-2 Poles and zeroes

	Parameter	Nominal values	Units
z _n	Zeroes	0 0 –108 –161	rad/s
p _n	Poles	-0.01815 ±0.01799i -173 -196 ±231i -732 ±1415i	rad/s
k	Normalization factor	2.316 x 10 ⁹	
S _{sensor}	Passband sensitivity at 1Hz	1196.5	V·s/m
f_0	Normalization frequency	1	Hz

**NOTE: Sensor sensitivity listed in Table 3-2 is for full differential response; SIO uses single sided input (halving this number to 598.25 V*s/m).

For the Trillium-40 seismometer sensitivity:

the manufacturer quotes 1553 V*s/m over +/-8V for a full differential signal. SIO-LC4x4 uses only a single-sided input to the A/D, effectively halving the sensitivity, thus:

S(T40-ss) = 776.5 V/m/s

flat response: 0.025 Hz (40 sec) to 50 Hz

Trillium 40 Seismometer Frequency response information: (From Trillium 40 User Guide - page 40)

Symbol	Parameter	Nominal Values	Units
		0	
		0	
z_n	Zeros	-68.8	rad/s
		-323	
		-2530	
		-0.1103 ±0.1110i	
n	Poles	-86.3	rad/s
p_n	FOIes	-241 ±178i	
		-535 ±719i	
k	Normalization factor	1.104x 10 ⁵	(rad/s) ²
f_0	Normalization frequency	1	Hz
S	Ground motion sensitivity at f_0	1553	V ·s/m

Table 9-1	Ground motion	response nomina	l parameters
-----------	---------------	-----------------	--------------

**NOTE: The passband sensitivity listed in Table 4-2 is for full differential response, SIO uses single sided input (halving this number to 776.5 V*s/m).

For the L28LB seismometer sensitivity:

Transduction constant --> 1.57 * sqrt(R-coil) V/m/s with R-coil = 630 ohm nominally this gives 39.53 V/m/s. SIO uses 70% coil current damping, (R-shunt-ss = (7860+51) ohm single-sided, divide by 2 to effective R-shunt damping for differential signal), thus R-shunt-diff = 3956 ohm, which gives:

S(L28) = 34.10 V/m/s

flat response: ~4.5 Hz and above

Frequency response information (for a damped oscillator):

Two zeros at 0, two poles at $\omega_0 \left(\delta \pm i \sqrt{1 - \delta^2} \right)$ where $\delta = 0.701$ (damping value).

Parameter	Nominal Value	Units
Zeros (2)	0 0	Rad/s
Poles (2)	19.820 +/- i*20.164	Rad/s
Normalization	-1	
Normalization Frequency	4.5	Hz

ELECTRONICS RESPONSE INFO:

<u>The sensitivity of the A/D is as follows:</u> With reference filter voltage of V-filt = 100 ohm the voltage range is +/- 2.47 V, max counts over this range are -Vref = -6,100,300 to +Vref = 6,102,081. This gives S(a/d) = 4.94 / 12,202,381 = 0.405 x 10**-6 V/count = 0.405 microV/count, or:

S(a/d) = 0.405 μV/count -or- (4.05e-7 V/count)

<u>Note</u>: A/D reaches full 24-bit range (i.e. -8388608 to 8388607) @ overvoltage of +/- 3.3 V. However, the response in this overvoltage range is roughly nonlinear. <u>Note2</u>: If V-filt = 10 ohm the voltage range is +/- 2.50 V \rightarrow S(a/d) = 0.410 microV/count.

PRE-AMP GAIN INFO:

Pre-amp gain settings for sensor/channel on all LC4x4 OBS deployments are:gain(DPG)= 64gain(T240-ss)= 0.102gain(T40-ss)= 0.200gain(L28)= 64

<u>Note</u>: To keep the Trillium on scale at the A/D input (max +/- 2.47 V), signal form the Trillium seismometers output are attenuated using an analog voltage divider on the pre-amp board: V-T240-div = R-T240-gnd-eff / (R-T240-sig + R-T240-gnd-eff) = 795 / (6980 + 795) = 0.102 V-T40-div = R-T40-gnd-eff / (R-T40-sig + R-T40-gnd-eff) = 1746 / (6980 + 1746) = 0.200

TOTAL SYSTEM RESPONSE INFO:

Total system response then becomes: S(total) = S(a/d)/[S(sensor)*gain]

LC4x4 Generalized Total System Response:	
LC4x4-LP units: DPG pressure response	= 0.867 mPa/count (500 sec to ~30+ Hz) = 8.67e-4 Pa/count
Trillium-240-OBS Velocity response	= 6.637 (nm/s)/count (240 sec to 35 Hz) = 6.637e-9 (m/s)/count
Trillium-40-OBS Velocity response	= 2.608 (nm/s)/count (40 sec to 50 Hz) = 2.608e-9 (m/s)/count
<u>LC4x4-SP units:</u> DPG pressure response	= 0.867 mPa/count (500 sec to ~30+ Hz) = 8.67e-4 Pa/count
L28 Velocity response	= 0.186 (nm/s)/count (~4.5 Hz and above) = 1.86e-10 (m/s)/count