Lamont– Doherty Earth Observatory Office of Marine Affairs 61 Route 9W Palisades, NY 10969

Prepared By: Richard Oliver-Goodwin richardo@ldeo.columbia.edu 845 365-8677



# **R/V Maurice Ewing Data Reduction Summary**

# EW-0114 Fremantle, W. Australia - Hobart, Tasmania



# **Project Summary**

# DESCRIPTION

#### **Background and Scientific Objectives**

The supply of melt to a spreading ridge, the distribution of the melt along the axis, melt extraction and emplacement to form the crust and the crust's subsequent tectonic modification are shaped by a matrix of parameters. The most apparent controlling parameter is spreading rate. However, spreading rate is clearly not the entire story, as demonstrated, for example, by the change from and axial valley to an axial high accompanied by changes in the ridge segmentation, volcanic landforms and crustal thickness which is observed as a slow spreading ridge approaches a hot spot. Other major forcing functions proposed as important controls on the creation of new crust at spreading centers include mantle temperature, mantle source composition, tectonic setting and ridge obliquity.

Analysis of the effects of different parameters that influence crustal accretion requires identification of areas where the individual parameters vary systematically while the spreading rate remains constant. The Southeast Indian Ridge (SEIR) south of Australia is located near the equator of its pole of rotation so the spreading rate varies slowly along the ridge. In particular, spreading rates in the region between 100°E and 116°E vary by only about 1 mm/yr, at 75–76 mm/yr. In addition, basalt major element and isotope geochemistry determined from an extensive suite of dredges between 88°E and 118°E suggest a relatively constant mantle source for the basalts.

There is a systematic depth gradient along SEIR to the east of 88°E. Near–axis isochronal ridge flank depths increase slowly from 2800 m at 91°E to 2900 m at 100°E and then more steeply to about 3300m at 115°E [Ma and Cochran, 1997] (Figure not included]. This portion of the SEIR is located between a shallow section of the ridge axis (78°E to 85°E) influenced by the Amsterdam and Kerguelin hot spots and the Australian–Antarctic Discordance (AAD) (120°E–128°E). A variety of geophysical and geochemical evidence indicates that the AAD is underlain by an unusually cold mantle. Since the spreading rate and the mantle source both are nearly constant along this portion of the SEIR, the along–axis variation in depth can reasonably be ascribed primarily to the effects of an along–axis variation in mantle temperature between the hot spot–influenced region farther to the west and the AAD farther to the east. In addition, the spreading rate on the SEIR is within the crucial intermediate range (75–80 mm/yr) where the crustal accretion process is most sensitive to small variation in melt supply. Therefore, the result of the along–axis temperature gradient is that nearly the entire range of axial morphology and abyssal hills observed at MOR axes and flanks are present within a 1200 km portion of the SEIR between 100°E and 116°E.

The SEIR is therefore an ideal laboratory in which to investigate the effects of temperature variations on magma supply and the crustal accretion process. We are proposing a geophysical investigation of the dependence of melt supply on mantle temperature and the effects of the variation in melt supply along the SEIR on the crustal accretion process. Our proposed study is built around a seismic experiment including both refraction lines utilizing ocean–bottom hydrophones (OBHs) to determine variations in crustal thickness (taken as a proxy for total melt supply) and upper mantle seismic velocity , and multichannel seismic (MCS) reflection surveys to determine the internal structure of the crust, particularly Layer 2A (extrusive) thickness and its relationship both to melt supply and to axial and abyssal hill crustal structure

and axial and ridge flank morphology to better understand the crustal accretion process.

Dr. James Cochran (excerpted from NSF Project Proposal)

# **Cruise Members**

# **Science Party**

| Jim Cochran       | Chief Scientist    | jrc@ldeo.columbia.edu     |
|-------------------|--------------------|---------------------------|
| Jackie Floyd      | Co-Chief Scientist | jsfloyd@ldeo.columbia.edu |
| Eduardo Rubio     | Co-Chief Scientist | eduardrubio@hotmail.com   |
| Janet Baran       |                    | baran@ldeo.columbia.edu   |
| Ian Cochran       |                    | iccochra@colby.edu        |
| Dave Dubois       | WHOI Engineer      | ddubois@whoi.edu          |
| Ann Fraioli       |                    | af201@earthlink.net       |
| Robert Handy      | WHOI Engineer      | rhandy@whoi.edu           |
| Binjamin Medvedev |                    | benny@gii.co.il           |

# Ship's Science

| Joe Stennett           | Science Officer | sci@ewing.ldeo.columbia.edu     |
|------------------------|-----------------|---------------------------------|
| John Dibernardo        | PSSO            | gunners@ewing.ldeo.columbia.edu |
| Hamish Gordon          | Gunner          | gunners@ewing.ldeo.columbia.edu |
| Karl Hagel             | ET              | hagel@ldeo.columbia.edu         |
| Glenn Nicholson        | Gunner          | glenn@ldeo.columbia.edu         |
| Richard Oliver–Goodwin | Data Reduction  | richardo@ldeo.columbia.edu      |
| Justin Walsh           | Gunner          | cabinboy@ldeo.columbia.edu      |

# Ship Crew

| Mark C. Landow     | Captain                    | captain@ewing.ldeo.columbia.edu |
|--------------------|----------------------------|---------------------------------|
| Albert Karlyn      | Chief Engineer             | engine@ewing.ldeo.columbia.edu  |
| Gilbert Thurston   | 1 <sup>st</sup> Mate       |                                 |
| Robert Beauregard  | 2 <sup>nd</sup> Mate       |                                 |
| Rick Thomas        | 3 <sup>rd</sup> Mate       |                                 |
| Matt Tucke         | 1 <sup>st</sup> A/Engineer |                                 |
| Miguel Flores      | 2 <sup>nd</sup> A/Engineer |                                 |
| Chris Rooney       | 3 <sup>rd</sup> A/Engineer |                                 |
| Robert Ewing       | Bosun                      |                                 |
| Branniff, Marcella | A/B                        |                                 |
| Doughty, Dan       | O/S                        |                                 |
| Hawthorne, Robert  | Oiler                      |                                 |
| Lee, Dan           | Oiler                      |                                 |
| Matos, Frank       | Electrician                |                                 |
| Miller, Warren     | A/B                        |                                 |
| Moqo, Luke         | Utility                    |                                 |

| Noonan, Meg        | A/B     |  |
|--------------------|---------|--|
| Smith, John        | Steward |  |
| Strickland, Leslie | Oiler   |  |
| Sypongco, Arnold   | O/S     |  |
| Taylor, Kelly      | Cook    |  |

**Cruise Notes** 

All data in this report is logged using GMT time and Julian days in order to avoid confusion with local time changes.

# **CRUISE NOTES:**

# **Spectra**

Spectra logs data to files in UKOOA<sup>1</sup> P1/90 format and P2/94 Format. The file formats are included in separate PDF documents on the tape. The contents of these files contain all the parameters used during shooting each of the lines, as well as the positions of all the sensors. I have included perl scripts for extracting shot times and positions from the P1 and P2 files on the tape.

- Grossly incorrect magnetic declination was input for the compass data and resulted in incomplete P190 files. This was fixed by MCS Line 17.
- 2. Shot times are not accounted for in the millisecond range.

#### **Positioning of Sensors**

The Spectra system defines a reference point which is used as a reference to all points which need an offset (range and bearing to TB, for example). This reference point has been defined as the center of the ship's mast, at sealevel.

Any documentation included herein that refers to the vessel reference or reference or master will be referring to this reference point.

However, daily navigation files that are not related to spectra (ie. n., hb.n, mg.n, files ) are referenced to the Tasmon P–Code GPS filtered positions.

Offset information can be found under the Ship Diagrams section of this document.

#### **Data Reduction**

Since spectra positions its shots precisely based on a Kalman filtering algorithm, we will assume that it has the correct shot location. However, as a fallback measure, I have also processed the shots using our normal navigation filtering.

Therefore you will find the following shotlog files:

- nb0.r Contains shot times and positions based on Spectra positioning.
- nb2.r Contains shot times and positions based on Spectra navigation
- ts.n
   Contains shot times and positions based on Ewing navigation
- shots.p1 Contains shot times and positions based on Spectra P1 files
- shots.p2
   Contains shot times and positions based on Spectra P2 files

Please see the File Formats section for more information on these files.

1 United Kingdom Offshore Operators Association

# **Hydrosweep**

In an attempt to correct "tilted" pings, ping to ping depth differences, and chronic "narrow beams", Joe and I installed both a new Sidescan memory board (type GE6028G301) and a new Flashdisk (v. 8) in the DS–2 system on julian day 341. Although the "narrow beam" mode appeared much less often than previously witnessed, the other problems continued to present themselves.

As usual, data acquisition was excellent during this cruise. With the exception of harsh weather days, we experienced less than 1% average dropouts. Hydrosweep bathymetry processing was completed by both Ian Cochran and Ann Frailoi and is included in the ping\_edits directory on tape.

# Gravity

Although level to the eye, it became evident once the weather settled down that one of the gyros needed to be replaced.

# **Magnetics**

There were sporadic problems with magnetic data acquisition as a direct result of the extremely harsh weather conditions. In fact, both a "fish" as well as a cable were damaged and lost during the cruise.

# **Seismic Acquisition**

There were a several failures of the Syntron system related to both tape drive failures as well as VME bus hang ups. With the exception of one freeze which forced us to reshoot part of MCS Line, most of the hangups were rectified early and data loss was minimized.

Streamer configuration files are included on the tape in Excel 97 format. **Note:** As a result of extremely harsh weather conditions, bird #14 (compass/depth) was lost sometime after completion of MCS Line 17 (julian day 360). When the streamer was recovered, bird #14 was replaced by bird #1 (depth only) and the streamer was redeployed.

# Ship Offset Diagram (included separately in both .pdf and .dxf formats)



MAURICE EWING MCS SETBACK AND OFFSET DIAGRAM

# Ship Diagrams

# Gun Array Diagrams

#### R/V EWING 10-AIRGUN ARRAY USED ON LEG 0114

(Guns were arranged to match working depth transducers) (not to scale)

3050 cu in., 50 liters

| STARBOARD<br> GUN 1 | - 145(2.4L)        | +17.8m        |
|---------------------|--------------------|---------------|
| GUN 2               | <br> 850(1         | 3.9L)  +16.3m |
| GUN 3               | <br> 305(5.0L)<br> | +14.8m        |
| GUN 7               | <br> 80(1.3L)<br>  | +8.8m         |
| GUN 9               | <br> 585(8.9L)     | +3.5m         |
|                     | centerline         |               |
| GUN 12              | 385(6.3L)<br>      | –3.5m         |
| GUN 14              | <br>_ 120(2.0L)    | -8.8m         |
| GUN 17              | <br> 200(3.3L)     | -13.3m        |
| GUN 18              | <br> 235(3.9L)     | –14.8m        |
| GUN 20<br>PORT      | <br>- 145(2.4L)    | –17.8m        |
| <> <br> <>          | >                  |               |

|<---->| |<---->|

Guns 1–8 are towed from the starboard boom. Guns 9–12 are towed from the stern A–frame. Guns 13–20 are towed from the port boom. Gun volumes given in cubic inches and liters. Gunline lengths are measured from the stern.

#### GENERAL LAYOUT OF THE R/V EWING 20-AIRGUN ARRAY

(not to scale)

8480 cu in., 139 liters



11

| <> 104 ft (32m)> |
|------------------|
| <>  121 ft (37m> |
| < 135 ft (41m)>  |

Guns 1–8 are towed from the starboard boom. Guns 9–12 are towed from the stern A–frame. Guns 13–20 are towed from the port boom. Gun volumes given in cubic inches and liters. Gunline lengths are measured from the stern. The R/V Maurice Ewing data logging system is run on a Sparc Ultra Enterprise Server. Attached are 48 serial ports via 3 16–port Digi International SCSI Terminal Servers. Generally, all data logged by the Ewing Data Acquisition System (DAS) is time stamped with the CPU time of the server, and broadcast to the Ewing network using UDP packet broadcasts. The CPU time of the server is synchronized once every half hour to a Datum UTC gps time clock.

GPS times are also time-tagged with cpu time, although the time of the GPS position is from the GPS fix itself.

The following tables describe the data instruments which performed logging during this cruise. The tables associated with the instruments describe logging periods and data losses for that instrument.

# Time Reference

#### Datum StarTime 9390-1000

| logging interval: | 30 minutes |
|-------------------|------------|
| file id:          | tr2        |

Used as the CPU synchronization clock. This clock is polled once every half hour to synchronize the CPU clock of the data logger to UTC time. The logger (octopus) is responsible for updating the times of the other CPUs.

This clock was running and synchronizing the system the entire cruise.

Interruption s greater than 30 minutes are displayed in the following table

| Log Date              | LogDate | Comment                    |
|-----------------------|---------|----------------------------|
| 2001+341:00:01:29.725 |         | Logging officially started |
|                       |         | Logging officially ends    |

## **Spectra**

Spectra uses its own Trimble gps receiver for synchronizing its hardware to UTC time. This is the time the shot points are referenced to; not the CPU time.

Spectra P1 and P2 files were logged. Due to some configuration problems with respect to "approach" shots, the first shot of a few lines were not logged. However, since these shots were "approach" shots or shots before the official line start, data loss was trivial.

# **GPS Receivers**

GPS data is usually logged at 10 second intervals. The NMEA strings GPGGA and GPVTG are logged for position, speed, and heading fixes. This data was logged constantly throughout the cruise.

The Tasmon GPS was the primary GPS for this cruise.

#### Trimble Tasmon P/Y Code Receiver

| logging interval: | 10 seconds |
|-------------------|------------|
| file id:          | gp1        |

The Tasmon is the primary GPS receiver for the Ewing Logging system and the primary GPS for Spectra fixes. The accuracy is around 15 meters. There were no interruptions during this cruise.

Interruptions greater than 10 minutes are displayed in the following table

| Log Date              | LogDate | Comment                    |
|-----------------------|---------|----------------------------|
| 2001+341:04:24:57.416 |         | Logging officially started |
| 2002+024:23:59:57     |         | Logging officially ends    |

#### Trimble NT200D

| logging interval: | 10 seconds |
|-------------------|------------|
| file id:          | gp2        |

The Trimble is the secondary receiver for GPS data. Data is logged at 10 second intervals and is also used as an input to Spectra, although it is weighed at a lower value than the Tasmon receiver.

Interruptions greater than 10 minutes are displayed in the following table

| Log Date              | LogDate | Comment                    |
|-----------------------|---------|----------------------------|
| 2001+341:04:25:47.810 |         | Logging officially started |
| 2002+024:23:59:55.705 |         | Logging Ends               |

#### **Tailbuoy Garmin GP8**

| logging interval: | 10 seconds |
|-------------------|------------|
| file id:          | tb1        |

The tailbuoy receiver stopped working after MCS Line 17 due to damage suffered in fierce weather conditions. Subsequent to this, tailbuoy position, range and bearing were eliminated from Spectra's Kalman Filtering process. Also note that often, the tailbuoy was being logged while it was on deck for testing purposes.

Interruptions greater than 30 minutes are displayed in the following table

| Log Date              | Log Date              | Comment                          |
|-----------------------|-----------------------|----------------------------------|
| 2001+352:11:47:59.337 |                       | Tailbuoy logging starts          |
| 2001+352:12:10:27.026 | 2001+354:04:56:24.501 | Tailbuoy data interruption       |
| 2001+354:04:57:57.726 | 2001+355:03:05:24.227 | Tailbuoy data interruption       |
| 2001+355:03:37:39.600 | 2001+355:10:07:01.778 | Tailbuoy data interruption       |
|                       |                       | Start MCS                        |
| 2001+355:23:58:02.816 | 2001+356:05:06:12.894 | Tailbuoy data interruption       |
| 2001+360:13:38:27.644 | 2001+360:14:48:25.782 | Tailbuoy data interruption       |
| 2001+361:10:18:14.828 |                       | Tailbuoy logging officially ends |

# **Speed and Heading**

## Furuno CI–30 Dual Axis Speed Log Sperry MK–27 Gyro

logging interval: 6 seconds file id: fu

The Furuno and Gyro are combined to output speed, heading and course information to a raw Furuno file, as well as an NMEA VDVHW signal used as an input to various systems including steering and Spectra.

Interruptions greater than 30 minutes are displayed in the following table

| Log Date              | Log Date | Comment             |
|-----------------------|----------|---------------------|
| 2001+341:04:31:42.499 |          | Official start date |
| 2002+024:23:59:57.198 |          | Official end date   |

# Gravity

### Bell Aerospace BGM-3 Marine Gravity Meter System

| logging interval: | 1 second                   |
|-------------------|----------------------------|
| file id:          | vc. (raw), vt. (processed) |
| drift per day:    | 0.035                      |

The BGM consists of a forced feedback accelerometer mounted on a gyro stabilized platform. The gravity meter outputs raw counts approximately once per second which are logged and processed to provide real-time gravity displays during the course of the cruise as well as adjusted gravity data at the end of the cruise.

Interruptions greater than 10 minutes are displayed in the following table

Log Date

Log Date

2001+341:04:33:12.297

Official start date

Comment

#### Log Date

#### Log Date

Comment

2001+360:13:38:51.666

2001+360:14:28:46.116

Gravity data interruption Official end time

2002+024:23:59:59.438

# Bathymetry

#### Krupp Atlas Hydrosweep–DS2

| logging interval: | variable based on water depth |
|-------------------|-------------------------------|
| file id:          | hb (centerbeam), hs (swath)   |

The hydrosweep full swath data is continuously logged for every cruise, and centerbeam data is extracted and processed separately. The centerbeam operates at a logging frequency dependent on the water depth. The hydrosweep was intermittently disabled during OBH instrument deployment and recovery.

The full swath data is not routinely processed, but can be processed with the MB–System software which can be downloaded for free. For instructions, use the website: <u>http://www.ldeo.columbia.edu/MB–System</u>.

MBSystem, version 5.0beta3 is necessary to process data after June 1, 2001.

Log Date LogDate Comment 2001+341:04:38:14 Official start logging 2001+341:04:40:22 2001+341:06:23:45 HS data interruption 2001+349:07:50:57 2001+349:08:47:49 HS data interruption 2001+360:13:38:18 2001+360:14:30:30 HS data interruption 2001+361:06:36:50 2001+361:06:58:10 HS data interruption 2002+024:23:59:59 Official end logging

Interruptions greater than 10 minutes are displayed in the following table

# Weather Station

#### RM Young Precision Meteorological Instruments, 26700 series

| logging interval: | 1 minute |
|-------------------|----------|
| file id:          | WX       |

2001+341:04:34:08.880

The weather station is used to log wind speed, direction, air temperature, and barometric pressure. We log this information at 1–minute intervals.

Log Date

LogDate

**Comment** Official start logging

16

# Log Date

LogDate

#### Comment

2001+360:13:40:06.144 2001+361:06:37:00.760 2002+024:23:59:00.156

2001+360:14:29:24.384 2001+361:06:56:24.712

Official end logging

# **Magnetics**

# Varian Magnetometer

| logging interval: | 12 seconds |
|-------------------|------------|
| file id:          | mg         |

The following table shows the times the magnetometer was logging

| Start Log Date        | End LogDate           | Comment |
|-----------------------|-----------------------|---------|
| 2001+343:05:42:52.980 | 2001+345:21:30:18.867 |         |
| 2001+355:14:14:47.672 | 2001+360:19:17:38.603 |         |
| 2001+362:08:00:40.628 | 2001+362:12:55:56.425 |         |
| 2001+365:01:51:13.036 | 2002+006:08:03:12.303 |         |
| 2002+018:07:51:27.856 | 2002+023:11:10:33.515 |         |

The following items were of concern during this cruise:

- The P2 and P1 formats do not store the shot time in millisecond range
- · SIOSEIS cannot handle the Spectra output header for SEG-D

Due to these facts, Jeff Turmelle created a system where we would use data from the Spectra header, data from the Digicourse cable output, data from the gun depths, and real-time data from the Ewing logging system to compose a Ewing standard SEG–D header readable by SIOSEIS to place on the 3490 tape for each shot.

There are several files for each line reflecting the line status:

| File       | Description                                                                          |
|------------|--------------------------------------------------------------------------------------|
| ts.n       | Shot time is merged with Ewing navigation to determine shot location                 |
| nb2.r      | Navigation is from Spectra, and includes tailbuoy, tailbuoy range and bearing        |
| shotlog.p1 | Shots are from the p1 file. (should be identical to nb2.r), includes source position |
| shotlog.p2 | Shots are from the p2 file (should be identical to tss.n), includes source position  |

# **Shot Files Table**

| Line    | Times                        | Ewing(ts.n, nb2.r)                                                              |         | Spectra (shots.p1, shotlog.p2) |          |         |
|---------|------------------------------|---------------------------------------------------------------------------------|---------|--------------------------------|----------|---------|
| Name () | 0                            | Shots                                                                           | Missing | P1 Shots                       | P2 Shots | Missing |
| OBHL_1  | 346:08:07:34<br>347:02:28:21 | 0005-0468<br>(Note: Shots<br>0385-0468<br>are the first<br>"ranging"<br>shots.) |         |                                |          |         |
| TEST1   | 347:03:27:19<br>347:11:25:54 | 0001–0025<br>0001–0018<br>0001– 0022                                            |         |                                |          |         |
| OBHL_2  | 348:03:51:47<br>348:16:44:17 | 0001–0390                                                                       |         |                                |          |         |
| TEST2   | 348:19:30:15<br>349:07:04:04 | 0001–0041<br>0001–0036<br>0001–0046<br>0001–0037                                |         |                                |          |         |
| OBHL_3  | 349:21:08:01<br>350:12:06:01 | 0001–0450                                                                       |         |                                |          |         |

| Line     | Times                        | Ewing(ts.n, nb2.r)                                            |           | Spectra (shots.p1, shotlog.p2)      |                                     |         |
|----------|------------------------------|---------------------------------------------------------------|-----------|-------------------------------------|-------------------------------------|---------|
| Name     | 0                            | Shots                                                         | Missing   | P1 Shots                            | P2 Shots                            | Missing |
| TEST3    | 350:15:30:59<br>351:03:00:53 | 0001-0046<br>0001-0045<br>0002-0036<br>0001-0003<br>0001-0049 | 0001      |                                     |                                     |         |
| OBHL_4   | 352:10:07:29<br>353:00:35:08 | 0001–0288<br>0001–0126                                        |           |                                     |                                     |         |
| TEST4    | 353:22:54:52                 | 0001-0005<br>0001-0102<br>0001-0052<br>0001-0048<br>0001-0049 |           |                                     |                                     |         |
| MCSTEST  | 355:12:01:47<br>355:13:28:55 | 0001–0286<br>0001–0041<br>0001–0024                           |           | 0001–0286<br>0001–0041<br>0001–0024 | 0001–0286<br>0001–0041<br>0001–0024 |         |
| MCSL_1   | 355:13:52:52<br>355:23:51:02 | 0002–1771                                                     |           | 0003–1771                           | 0003–1771                           | 0002    |
| MCSL_2   | 356:00:40:25<br>356:10:28:52 | 0024–1841                                                     | 1280      | 0024–1841                           | 0024–1841                           |         |
| MCSL_3   | 356:10:35:11<br>356:12:59:07 | 0004, 0019–<br>0360                                           |           | 0004,0019–<br>0360                  | 0004,0019–<br>0360                  |         |
| MCSL_4   | 356:13:17:22<br>356:23:31:55 | 0001–1845                                                     |           | 0001–1845                           | 0001–1845                           |         |
| MCSL_5   | 357:00:24:38<br>357:09:54:16 | 0099–1743                                                     |           | 0099–1743                           | 0099–1743                           |         |
| MCSL_6   | 357:10:08:57<br>357:13:34:22 | 0030–0628                                                     | 0016–0029 | 0016–0628                           | 0016–0628                           |         |
| TEST6    | 357:14:03:37<br>357:14:45:11 | 0001–0029<br>0001–0111                                        |           |                                     |                                     |         |
| MCSL_7   | 357:14:54:47<br>357:19:26:58 | 0001–0002<br>0001–0762                                        |           | 0001–0002<br>0001–0762              | 0001–0002<br>0001–0762              |         |
| MCSL_8   | 357:20:42:37<br>358:00:32:09 | 0015–0765                                                     |           | 0015–0765                           | 0015–0765                           |         |
| MCSL_9   | 358:02:06:06<br>358:07:44:37 | 0001–0950                                                     |           | 0001–0950                           | 0001–0950                           |         |
| MCSL_10  | 358:08:55:03<br>358:16:15:47 | 0003–1344                                                     |           | 0003–1344                           | 0003–1344                           |         |
| MCSL_11  | 358:17:42:39<br>359:00:20:04 | 0001–1153                                                     |           | 0001–1153                           | 0001–1153                           |         |
| MCSL_12a | 359:01:39:14<br>359:04:59:22 | 0001–0633                                                     |           | 0001–0633                           | 0001–0633                           |         |

| Line     | Times                        | Ewing(ts.n, nb2.r)      |                                                                            | Spectra (shots.p1, shotlog.p2) |                         |               |
|----------|------------------------------|-------------------------|----------------------------------------------------------------------------|--------------------------------|-------------------------|---------------|
| Name     | 0                            | Shots                   | Missing                                                                    | P1 Shots                       | P2 Shots                | Missing       |
| MCSL_12b | 359:06:46:14<br>359:08:03:45 | 0001–0240               | 0038–0046                                                                  | 0001–0240                      | 0001–0240               |               |
| MCSL_12c | 359:10:01:58<br>359:10:41:01 | 0140–0257               | 0133                                                                       | 0133,0140–<br>0257             | 0133,0140–<br>0257      |               |
| MCSL_13  | 359:11:58:24<br>359:17:15:07 | 0001–0951               |                                                                            | 0001–0951                      | 0001–0951               |               |
| MCSL_14  | 359:18:37:40<br>360:00:50:14 | 0001–1140               |                                                                            | 0001–1140                      | 0001–1140               |               |
| MCSL_15  | 360:02:17:24<br>360:06:53:12 | 0001–0005,<br>0031–0848 |                                                                            | 0001–0005,<br>0031–0848        | 0001–0005,<br>0031–0848 |               |
| MCSL_16  | 360:08:03:16<br>360:12:43:43 | 0001–0824               |                                                                            | 0001–0824                      | 0001–0824               |               |
| MCSL_17  | 360:14:46:04<br>360:19:18:58 | 0088–0939               |                                                                            | 0088–0939                      | 0088–0939               |               |
| MCSL_18  | 362:05:19:21<br>362:12:37:37 | 0002–1308               | 0515                                                                       | 0003, 0005–<br>1308            | 0003, 0005–<br>1308     | 0002,<br>0004 |
| MCSL_19  | 362:14:32:16<br>362:20:18:14 | 0002–0958               | Note: No<br>shots<br>officially<br>missed;<br>line ended<br>@ shot<br>#958 | 0003–1101                      | 0003–1101               | 0002          |
| MCSL_20  | 364:10:51:16<br>364:17:13:19 | 0002–1128               |                                                                            | 0003–1128                      | 0003–1128               | 0002          |
| MCSL_21  | 364:22:14:36<br>365:10:52:35 | 0002–2330               |                                                                            | 0003–0004,<br>0059–2330        | 0003–0004,<br>0059–2330 | 0002          |
| MCSL_22  | 365:12:38:07<br>365:18:52:59 | 0095–1436               |                                                                            | 0095–1436                      | 0095–1436               |               |
| MCSL_23  | 365:19:47:31<br>001:08:01:31 | 0120–2488               |                                                                            | 0120–2488                      | 0120–2488               |               |
| MCSL_24  | 001:08:43:21<br>001:22:38:53 | 0001–2520               |                                                                            | 0120–2520                      | 0120–2520               |               |
| MCSL_25  | 002:05:35:04<br>002:21:40:35 | 0001–0010,<br>0014–3975 | 1727                                                                       | 0001–0010,<br>0014–3975        | 0001–0010,<br>0014–3975 |               |
| MCSL_26  | 002:21:58:05<br>002:23:46:58 | 0048–0475               |                                                                            | 0048-0475                      | 0048-0475               |               |
| MCSL_27  | 002:23:57:51<br>003:15:23:34 | 0037–3565               |                                                                            | 0037–3565                      | 0037–3565               |               |
| MCSL_28  | 003:15:42:04<br>003:18:08:41 | 0054–0670               |                                                                            | 0054–0670                      | 0054–0670               |               |

| Line     | Times                        | Ewing(ts.n, nb2.r)                               |      | Spectra (shots.p1, shotlog.p2)       |                                      |         |  |  |
|----------|------------------------------|--------------------------------------------------|------|--------------------------------------|--------------------------------------|---------|--|--|
| Name     | 0                            | Shots Missing                                    |      | P1 Shots                             | P2 Shots                             | Missing |  |  |
| MCSL_29  | 003:18:21:54<br>003:22:13:03 | 0031–0978                                        |      | 0031–0978                            | 0031–0978                            |         |  |  |
| MCSL_30  | 003:23:40:20<br>004:04:26:07 | 0001–1027                                        |      | 0001–1027                            | 0001–1027                            |         |  |  |
| MCSL_30A | 004:04:26:07<br>004:06:03:26 | 0015,0034–<br>0392                               |      | 0015,0034–<br>0392                   | 0015,0034–<br>0392                   |         |  |  |
| MCSL_31  | 004:06:16:35<br>004:10:48:28 | 0001–1031                                        |      | 0001–1031                            | 0001–1031                            |         |  |  |
| MCSL_32  | 004:10:48:28<br>004:16:55:17 | 0055–1557                                        |      | 0055–1557                            | 0055–1557                            |         |  |  |
| MCSL_33  | 004:18:29:39<br>004:22:36:10 | 0001–1020                                        |      | 0001–1020                            | 0001–1020                            |         |  |  |
| MCSL_33A | 004:22:51:31<br>005:00:41:22 | 0049–0479                                        |      | 0049–0479                            | 0049–0479                            |         |  |  |
| MCSL_34  | 005:00:55:37<br>005:06:13:06 | 0057–1330                                        |      | 0057–1330                            | 0057–1330                            |         |  |  |
| MCSL_35  | 005:06:25:56<br>005:12:46:34 | 0049–0058,<br>0069–0071<br>0115–1536             |      | 0049–0058,<br>0069–0071<br>0115–1535 | 0049–0058,<br>0069–0071<br>0115–1535 | 1536    |  |  |
| MCSL_36  | 005:12:57:06<br>005:18:29:51 | 0044–1350                                        |      | 0044–1350                            | 0044–1350                            |         |  |  |
| MCSL_36A | 005:18:45:01<br>005:19:53:17 | 0046–0458                                        | 0321 | 0046–0458                            | 0046–0458                            |         |  |  |
| MCSL_37  | 005:20:51:19<br>006:01:20:34 | 0055–1118                                        |      | 0055–1118                            | 0055–1118                            |         |  |  |
| MCSL_38  | 006:02:49:17<br>006:07:58:11 | 0001–1236                                        |      | 0001–1236                            | 0001–1236                            |         |  |  |
| OBHL_5   | 007:04:08:02<br>007:06:40:02 | 0001–0077                                        |      |                                      |                                      |         |  |  |
| OBHL_5A  | 010:02:12:13<br>010:14:12:13 | 0001–361                                         |      |                                      |                                      |         |  |  |
| TEST5A   | 010:19:46:29<br>011:08:11:01 | 0001-0034<br>0001-0034<br>0001-0028<br>0001-0023 |      |                                      |                                      |         |  |  |
| TEST7    | 016:01:56:35<br>016:08:04:41 | 0001-0041<br>0001-0037<br>0001-0039<br>0001-0032 |      |                                      |                                      |         |  |  |
| OBHL_7   | 016:12:36:51<br>016:20:50:51 | 0001-0248                                        |      |                                      |                                      |         |  |  |

| Line    | Times                        | Ewing(ts.n, nb2.r) |         | Spectra (shots.p1, shotlog.p2) |          |         |  |
|---------|------------------------------|--------------------|---------|--------------------------------|----------|---------|--|
| Name    | 0                            | Shots              | Missing | P1 Shots                       | P2 Shots | Missing |  |
| OBHL_7A | 017:07:58:43<br>017:16:32:43 | 0001–0258          |         |                                |          |         |  |

# Fremantle, W. Australia

# EW0113 Fremantle, Australia

| Pier/Ship    | Latitude    | Longitude     |                         |
|--------------|-------------|---------------|-------------------------|
|              | 32 02.960S  | 115 44.720E   |                         |
| The pier tie | was taken c | t Bollard 57, | which is near Shed D at |
| Reference    | Latitude    | Longitude     |                         |
|              | 32 03.156S  | 115 48.800E   |                         |

The reference tie was made to Bollard "E" which is the 6<sup>th</sup> Bollard from the end of th

|             | ld     | Julian | Date       | Mistie | Drift/Day | <b>Prev Mistie</b> |
|-------------|--------|--------|------------|--------|-----------|--------------------|
| Pre Cruise  | EW0112 | 299    | 10/26/2001 | 8.94   | -8.58     | 34.68              |
| Post Cruise | EW0113 | 338    | 12/03/2001 | 9.22   | 0.007     | 8.94               |
| Total Days  |        |        | 38.00      | 0.28   |           |                    |

|       |                                  | -         |                |
|-------|----------------------------------|-----------|----------------|
| Time  | Entry                            | Value     |                |
| 10:30 | CDeck Level BELOW Pier           | 2.00      |                |
| 10:00 | Pier 1 L&R Value                 | 3025.70   | L&R            |
| 14:00 | Reference L&R Value              | 3028.20   | L&R            |
| 10:05 | Pier 2 L&R Value                 | 3025.70   | L&R            |
|       | Reference Gravity                | 979417.30 | mGals          |
|       | Gravity Meter Value (BGM Reading | 979426.20 | mGals          |
|       | Potsdam Corrected                | 0         | 1 if corrected |

| Gravity meter is 5.5 meters below CDeck<br>Difference in meters between Gravity Meter and Pier 7.50 meters<br>Height Cor = Pier Height* FAA Constant |                                 |                      |             |    |                                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------|----|--------------------------------|--|--|--|--|--|
|                                                                                                                                                      | 7.50                            | 0.31                 |             |    | 2.33 mGais/min                 |  |  |  |  |  |
| Difference in mGals between Pier and Gravity Meter                                                                                                   |                                 |                      |             |    |                                |  |  |  |  |  |
|                                                                                                                                                      | Pier (avg) -                    | Reference *          | 1.06 L&R/mG | al | Delta L&R                      |  |  |  |  |  |
|                                                                                                                                                      | 3025.70                         | 3028.20              | 1.06        |    | -2.65 mGals                    |  |  |  |  |  |
| Gravity in mGals at Pierside<br>Reference + Delta mGals (+ Potsdam) Pier Gravity                                                                     |                                 |                      |             |    |                                |  |  |  |  |  |
|                                                                                                                                                      | 979417.30                       | -2.65                | 0.00        |    | 979414.65 mgals                |  |  |  |  |  |
| Gravity in n                                                                                                                                         | Gravity@meter                   |                      |             |    |                                |  |  |  |  |  |
|                                                                                                                                                      | 979414.65                       | 2.33                 |             |    | 979416.98 mGals                |  |  |  |  |  |
| Current Mis                                                                                                                                          | 979414.65<br>tie<br>BGM Reading | 2.33<br>Calculated G | Gravity     |    | 979416.98 mGais Current Mistie |  |  |  |  |  |

# **Gravity Ties**

# Hobart, Tasmania

# EW0114 Hobart, Tasmania

| Pier/Ship     | Latitude                               | Longitude                                  |                                                 |
|---------------|----------------------------------------|--------------------------------------------|-------------------------------------------------|
|               | 47 53.140S                             | 147 20.042E                                |                                                 |
| The pier tie  | was taken c                            | at an unumbe                               | ered bollard five (5) set on drain opening seve |
| marking on    | warehouse                              | (Shod #2)                                  |                                                 |
| marking on    | walenduse.                             | (31180 #2)                                 |                                                 |
| Reference     | Latitude                               | Longitude                                  |                                                 |
| Reference     | Latitude<br>32 03.156S                 | Longitude<br>115 48.800E                   |                                                 |
| The reference | Latitude<br>32 03.156S<br>ce tie was n | Longitude<br>115 48.800E<br>nade inside fl | ne main terminal at the extreme right of the Q  |

|             | ld     | Julian | Date       | Mistie | Drift/Day | <b>Prev Mistie</b> |
|-------------|--------|--------|------------|--------|-----------|--------------------|
| Pre Cruise  | EW0113 | 338    | 12/03/2001 | 9.22   | 0.01      | 8.94               |
| Post Cruise | EW0114 | 25     | 01/25/2002 | 9.44   | 0.004     | 9.22               |
| Total Days  |        |        | 53.00      | 0.22   |           |                    |

|   | Time  | Entry                            | Value     |                |
|---|-------|----------------------------------|-----------|----------------|
| l | 15:00 | CDeck Level BELOW Pier           | 1.00      |                |
|   | 15:00 | Pier 1 L&R Value                 | 4004.32   | L&R            |
|   | 15:39 | Reference L&R Value              | 4001.16   | L&R            |
| l | 16:30 | Pier 2 L&R Value                 | 4004.32   | L&R            |
|   |       | Reference Gravity                | 980449.40 | mGals          |
|   |       | Gravity Meter Value (BGM Reading | 980464.20 | mGals          |
| l |       | Potsdam Corrected                | 0         | 1 if corrected |

| Gravity meter                                      | is 5.5 meters                   | s below CD   | leck        |    |                 |  |  |  |  |  |
|----------------------------------------------------|---------------------------------|--------------|-------------|----|-----------------|--|--|--|--|--|
| Di<br>Height Cor = Pi                              | er and Pier                     | 6.50 meters  |             |    |                 |  |  |  |  |  |
|                                                    | 6.50                            | 0.31         |             |    | 2.02 mGals/min  |  |  |  |  |  |
| Difference in mGals between Pier and Gravity Meter |                                 |              |             |    |                 |  |  |  |  |  |
| Pi                                                 | er (avg) – 🛛 R                  | Reference *  | 1.06 L&R/mG | al | Delta L&R       |  |  |  |  |  |
|                                                    | 4004.32                         | 4001.16      | 1.06        |    | 3.35 mGals      |  |  |  |  |  |
| Gravity in mG                                      | als at Piersi                   | de           |             |    |                 |  |  |  |  |  |
| Re                                                 | eference + De                   | lta mGals [+ | Potsdam]    |    | Pier Gravity    |  |  |  |  |  |
| 9                                                  | 80449.40                        | 3.35         | 0.00        |    | 980452.75 mgals |  |  |  |  |  |
| Gravity in mGals at Meter                          |                                 |              |             |    |                 |  |  |  |  |  |
| Pie                                                | Pier Gravity+ Height Correction |              |             |    |                 |  |  |  |  |  |
| 9                                                  | 80452.75                        | 2.02         |             |    | 980454.76 mGals |  |  |  |  |  |
| Current Mistie                                     |                                 |              |             |    |                 |  |  |  |  |  |

| rent Mistie                   |                |
|-------------------------------|----------------|
| BGM ReadingCalculated Gravity | Current Mistie |
| 980464.20 980454.76           | 9.44 mGals     |

# File Formats

For all formats, a - in the time field means an invalid value for some reason.

# Streamer Compass/Bird Data

This data is not processed, but can still be found in the "processed" data directory. Shot Time Line Shot Latitude Longitude 2000+079:00:08:40.085 strike1 000296 N 15 49.6217 W 060 19.8019 2nd GPS Position Tailbuoy Position Longitude Latitude Longitude Latitude N 15 49.6189 W 060 19.8101 N 15 47.1234 W 060 20.1901 Furuno Streamer Gyro Compasses & Heading C01 2.3 C02 1.7 ... 344.1

# **Gun Depths**

Gun depths in tenths of meters. There will always be 20 gundepths even if only one gun was configured and shooting.

|                       | Gun | . Dep | ths |     |     |     |     |     |     |        |
|-----------------------|-----|-------|-----|-----|-----|-----|-----|-----|-----|--------|
| Shot Time             | 1   | 2     | 3   | 4   | 5   | 6   | 7   | 8   | 9   | <br>20 |
|                       |     |       |     |     |     |     |     |     |     |        |
| 2001+089:06:47:05.909 | 189 | 068   | 005 | 005 | 096 | 005 | 060 | 054 | 005 | <br>6  |

# Raw Furuno Log

This data has been smoothed and output 1 fix per minute.CPU Time StampTrack Speed HdgGyro2000+166:00:01:53.091 -4.4140.5148.3

# Hydrosweep Centerbeam

Hydrosweep data merged with navigation

|                       |        | Cente           | rbeam |         |             |
|-----------------------|--------|-----------------|-------|---------|-------------|
| <u>CPU Time Stamp</u> | Latitu | <u>de Longi</u> | tude  | Dej     | <u>ot</u> h |
| 2000+074:09:55:00.000 | N 13   | 6.6206          | W 59  | 39.3908 | 134.9       |

# Merged Data

GPS CPU Time Stamp Latitude Longitude Used Set Drift Depth 2000+200:12:25:00.000 N 45 54.1583 W 42 47.1770 gp1 0.0 0.0 Magnetic Gravity Total Intensity Anomaly FAA GRV EOTVOS Drift Shift -0.1 2.8 49464.7 55.5 22.2 980735.0 -8.4 Temperature Salinity Conductivity 0.0 0.0 0.0

# dg

# hb.n

fu.s

#### m

#### cb.r

The gravity drift and shift are values that have been added to the raw gravity to make up for drift in the meter that has been lost in accordance with a gravity check at each port stop.

Temperature,Salinity and Conductivity will only be valid while logging a Thermosalinograph, which is not usually the case.

## Magnetics Data

• A minus sign in the time stamp is flagged as a spike point, probably noise...

 Anomaly is based on the International Geomagnetic Reference Field revision 2000 <u>CPU Time Stamp</u> Latitude Longitude Raw Value Anomaly 200+077:00:23:00.000 N 16 11.2918 W 59 47.8258 36752.2 -166.8

### **Navigation File**

 CPU Time Stamp
 Latitude
 Longitude
 Used
 Set
 Drift

 2000+074:00:03:00.000 N 13 6.2214 W 59 37.9399
 gp1
 0.0
 0.0

# **Navigation Block**

Navigation is a compendium of Ewing logged data at shot time. The shot position here is the shot position from the Spectra system.

| <u>Shot T</u>  | lme                 |              | Shot #  | CPU   | Time              |             | Sho     | t Pos     | <u>ition</u> |        |         |
|----------------|---------------------|--------------|---------|-------|-------------------|-------------|---------|-----------|--------------|--------|---------|
| 2001+08        | 38:00:00:00         | 0.606 (      | 016967  | 2001+ | +088:0(           | ):00:03.    | 031 N 3 | 0 11.     | 8324 W (     | 042 10 | .8162   |
| Water<br>Depth | Sea Wir<br>Temp Spd | nd<br>Dir La | atitude |       | -Tailbu<br>Longit | loy<br>cude | Range   | <br>Bearg | Line<br>Name | Speed  | Heading |
| 2565.1         | 20.7 16.4           | 164 N        | 30 12.  | 0427  | W 042             | 14.7319     | 6296.3  | 93.5      | MEG-10       | 4.2    | 101.1   |

### **Tailbuoy Navigation**

Raw tailbuoy fixes <u>CPU Time Stamp Latitude Longitude GPS Precision</u> 2001+088:00:00:02.000 N 30 12.0424 W 042 14.7309 SA GPS Precision is either SA, DIFF or PCODE

### **Ewing Processed Shot Times**

Shot times and positions based on the Ewing navigation data processingCPU Time StampShot # LatitudeLongitudeLine Name2000+079:00:08:01.507000295 N 15 49.5703 W 060 19.7843 strike1

# Shot Data Status

The ts.nxxx.status file describes the line information for that day, giving some basic statistics about the line: start, end times; missing shots; start and end shots. LINE strikel: 98+079:00:00:15.568 : 000283 .. 002286

MISSING: 347, 410, 1727

LINE dip2: 98+079:23:05:22.899 : 000002 .. 000151

nb0

n

mg.n

### tb1.c

ts.n

ts.n.status

This example says that on Julian Day 079 of 1998, two lines (strikel and dip2) were run: the end of strike 1 (shots 000283 to 002286) and the start of dip2 (shots 000002 to 000151).

Line strikel had some missing shots in the data file (probably missing on the SEG-d header as well).

# Spectra Shot Times

The shot times and positions based on the Spectra positioning; with raw tailbuoy range and bearing. CPU Time Stamp Shot # Latitude Longitude Line Name 2001+084:00:00:05.924 009245 N 23 31.2410 W 045 25.0894 Tailbuov Longitude Latitude Range Bearing Line Name N 23 30.4540 W 045 21.4338 6389.8 283.2 KANE-4

### **Raw Gravity Counts**

sample BGM-3 gravity count record (without time tag): pp:dddddd ss \_\_\_\_\_ status: 00 = No DNV error; 01 = Platform DNV 02 = Sensor DNV; 03 = Both DNV's \_\_\_\_ count typically 025000 or 250000 \_\_\_\_ counting interval, 01 or 10 The input of data can be at 1 or 10 seconds.

# **Gravity Data**

\* A minus sign in the time stamp is flagged as a spike point \* m\_grv3 calculates the Eotvos correction as: eotvos\_corr = 7.5038 \* vel\_east \* cos(lat) + .004154 \* vel\*vel \* The theoretical gravity value is based upon different models for the earth's shape. 1930 = 1930 International Gravity Formula 1967 = 1967 Geodetic Reference System Formula 1980 = 1980 Gravity Formula \* The FAA is computed as: faa = corrected\_grv - theoretical\_grv \* Velocity smoothing is performed w/ a 5 point window CPU Time Stamp Latitude Longitude Model FAA RAW 2000+148:00:10:00.000 N 09 34.7255 W 085 38.5826 1980 9.48 978264.16 Eotvos Drift DC Raw Velocity Smooth Velocity Smooth Total Shift North East North East -74.78 0.06 4.16 1.875 -10.373 1.927 \10.166

# **Datum Time**

Datum Time Time Reference CPU Time 2001+069:00:15:29.727 069 00 15 29.378 datum

nb2.r

vt.n



ts2.r

Raw GPS is in NMEA Format.

# **Meteorological Data**

|                        |                         |         |           | True           |               |              |      |                         |           |       |      |                |             |      |
|------------------------|-------------------------|---------|-----------|----------------|---------------|--------------|------|-------------------------|-----------|-------|------|----------------|-------------|------|
| CPU T                  | ime Sta                 | amp     | Sp        | d Dir          | _             |              |      |                         |           |       |      |                |             |      |
| 2001+0                 | 045:00                  | :00:00. | 967       | 7.8 2          | 22            |              |      |                         |           |       |      |                |             |      |
| Bird1<br>Speed<br>Inst | :<br>60sA               | 60mA    | I<br>60sM | )irect<br>Inst | ion<br>60sA   | 60mA         |      | Bird 2<br>Speed<br>Inst | 2<br>60sA | 60mA  | 60sM | Direct<br>Inst | ion<br>60sA | 60mA |
| 7.8                    | 6.6                     | 8.5     | 16.8      | 277            | 291           | 5            |      | 0.0                     | 0.0       | 0.0   | 0.0  | 0              | 0           | 0    |
| Tempei<br>Inst         | rature<br>60mA          | 60mm    | 60mM      |                | Humic<br>Inst | lity<br>60mm | 60mM |                         | Barc      | meter |      |                |             |      |
| 15.0                   | 14.2                    | 14.3    | 15.1      |                | 92            | 90           | 93   |                         | 1027      | .5    |      |                |             |      |
| Inst:                  | Inst: Current           |         |           |                |               |              |      |                         |           |       |      |                |             |      |
| 60sA:                  | 60sA: 60 second average |         |           |                |               |              |      |                         |           |       |      |                |             |      |
| 60mA:                  | 00mA: 60 minute average |         |           |                |               |              |      |                         |           |       |      |                |             |      |
| 60sM:                  |                         | 60 sec  | ond max   | ximum          |               |              |      |                         |           |       |      |                |             |      |
| 60mm:                  | 60mm: 60 minute minimum |         |           |                |               |              |      |                         |           |       |      |                |             |      |
| 60mM:                  | mM: 60 minute maximum   |         |           |                |               |              |      |                         |           |       |      |                |             |      |

### Merged Meteorological Data

mmet

```
TSG, WX, CT merged with Nav at 1 minute fixes
date time lat lon gpu head spd
2001+244:00:00:00.000 12.14071 44.98469 gp1 10.2 83.0
tws twd temp hum press cti cte con sal ct
26.5 228.0 30.6 87.0 1000.8 28.8 28.8 5.9 36.3 28.8
gpu = gps unit in use
head = ship's heading
spd = ship's speed in knots
tws = true wind speed
twd = true wind direction
temp = air temp (celcius)
hum = relative humidity (%)
press= pressure in mb
cti = sea temp from the internal TSG sensor
cte = sea temp from the external TSG sensor
con = conductivity, Siemens/meter
sal = salinity, practical salinity units
ct = sea temp from the C-keel sensor (to tenths of a degree)
```

WX

#### Shot Times from Spectra P1 Files

These files were created with the script: *extract\_shots\_from\_p1* -a 1 <u>Epoch Time Shot# Source Lat/Lon TB Lat TB Lon</u> 985788741.000 015570 30.283881 -41.854536 30.320144 -41.886642 <u>Vessel Ref Lat/Lon Antenna GPS Lat/Lon Water Depth</u> 30.283478 -41.854117 30.283531 -41.854078 2894.2

- Source is the Center of the Guns
- TB is the Tailbuoy, according to Spectra
- Vessel Ref is the location of the center of the Mast
- Antenna GPS is the location of Antenna 1 (-a 1 flag); in this case is the Tasmon GPS
- Water Depth is the HS Centerbeam depth

# Shot Times from Spectra P2 Files

# shots.p2

These files were created with the script: extract\_shots\_from\_p2 -o "V1 G1" Epoch Time Shot# Vessel Ref Lat/Lon Source Lat/Lon 985716772.4 00015572 30.282803 -41.866136 30.283207 \41.866540

- Vessel Ref is the location of the center of the Mast
- Source is the Center of the Guns

Included are some scripts for extracting information out of the P1 and P2 formatted files. In order to use these scripts you will also need to install the Ewing Perl libraries included in the scripts directory, or at least include that directory in your PERL5LIB environment. The use of perl is beyond the scope of this document.

# extract\_shots\_from\_p1 [-a antenna] [-h] filename

Given an input P1 File, create a shotpoint file with the times, and the positions of the given antenna [1 = tasmon, 2 = Trimble] and optionally the header records at the beginning of the file.

The output will be:

epochtime shotnumber sourcePos tbPos vesselPos antennaPos depth

- epochtime is the # of seconds since Jan 1, 1970
- **shotnumber** is the shot number
- **sourcePos** is the center position of the sound source [lat lon]
- **tbPos** is the position of the tailbuoy [lat lon]
- vesselPos is the position of the vessel reference (center of mast) [lat lon]
  - antennaPos is the position of the specified antenna [lat lon]
    - 1 = tasmon, 2 = trimble
- **depth** is the water depth in meters

# extract\_shots\_from\_p2 [-s shotnumber] [-o "output values"]

-s define if you only want the statistics for a single shot

**-o** "*outputs*" defines the outputs you want from the P2 file.

This routine will output by default the shotpoint, the line name and the shot time. Optionally, you can output position (Lat Lon) info for a number of items:

Outputs can be one or more of the following:

- V1 Vessel 1 Reference
- V1G1 Tasmon GPS Receiver
- V1G2 Trimble GPS Receiver
- V1E1 Hydrosweep Transducer
- TB1 Tailbuoy 1
- S1 Streamer 1
- V1SC Streamer Compasses
- G1 Gun Array 1

All the formats output a Lat Lon pair in decimal degrees. (West and South being negative)

Output will be: epochtime shotnumber [output lat/lon pairs]

# Tape Contents

# EW0114

| EW0114.pdf     | this document                                                            |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------|--|--|--|--|--|
| ew0114.cdf     | NetCDF database file of this cruise                                      |  |  |  |  |  |
| ew0114.cdf_nav | NetCDF database file of this cruise' navigation                          |  |  |  |  |  |
| docs/          | File Formats, Spectra manuals                                            |  |  |  |  |  |
| processed/     | Processed datafiles merged with navigation                               |  |  |  |  |  |
| shotlogs/      | processed Shot Files                                                     |  |  |  |  |  |
| trackplots/    | daily cruise track plots (postscript)                                    |  |  |  |  |  |
| raw/           | Raw data directly from logger                                            |  |  |  |  |  |
| reduction/     | Reduced data files                                                       |  |  |  |  |  |
| clean/         | daily processing directory, includes daily postscript plots of the data. |  |  |  |  |  |
| scripts/       | Perl scripts and their friends                                           |  |  |  |  |  |
| spectra/       | P1/90 and P2/94 files from MCS lines                                     |  |  |  |  |  |
| streamer/      | Excel spreadsheets of streamer configuration                             |  |  |  |  |  |
|                |                                                                          |  |  |  |  |  |