SeisComP Introduction

Dr. Bernd Weber and Jan Becker

gempa GmbH, Potsdam, Germany

June 30, 2014
Outline

1. GITEWS

2. SeisComP
 - Overview
 - BMKG, Jarkarta/Indonesia
 - Architecture
 - Modules
 - GUIs
SeisComP3 - background

- SeisComP3 is developed in the scope of the GITEWS (German Indonesian Tsunami Early Warning) project
- GITEWS project was running from 2005 to 2010, follow up project is PROTECTS
- Total budget of 50 Mio EUR for GITEWS and 10 Mio EUR for PROTECTS
SeisComP Overview

- Software package handling
 - acquisition
 - archiving
 - processing
 - analysis
 - quality control

 of seismological data

- Graphical user interfaces for
 - visualization of waveforms and station status
 - event visualization
 - state-of-health monitoring
 - manual analysis

- Emphasis on simplicity and speed

- Developed in the context of tsunami warning
SeisComP Evolution

- Originally designed as acquisition and archiving software for GEOFON\(^1\)
- **2001** SeedLink as core acquisition protocol and software becomes a de-facto standard in Europe
- **2003** Development of simple automatic analysis tools (after Algerian earthquake)
- **2005**
 - global associator/locator
 - interactive analysis using Seismic Handler (SeisComP2)
 - ArcLink server as distributed waveform and meta-data server

\(^1\)http://geofon.gfz-potsdam.de
SeisComP Evolution

- **2006** Development of the 3rd generation of SeisComP within GITEWS project
- **2007** Installation at BMKG, Jakarta/Indonesia in May 2007
- **2008** Major release SeisComP3 Barcelona (first public release)
- **2009** Major release SeisComP3 Erice
- **2010** Major release SeisComP3 Potsdam
- **2011** Major release SeisComP3 Zurich
- **2012** Major release SeisComP3 Seattle

Seattle version is stable, 11 major updates since release.
SeisComP Main Features

- Distributed processing
- SeedLink for data acquisition
- SeisComP3XML, a branch of QuakeML\(^2\) for database schema and communication protocol
- Automatic 2 level P- and S-picker (STA/LTA and AIC)
- Automatic location modules supporting different velocity models and locators
- Magnitudes: MLv, ML, Md, mb, mB, Mw(mB), Mwp, Mw(Mwp), Mjma, Ms(BB)
- Graphical user interfaces
 - Real-time traces
 - Network/station status
 - Event visualization
 - Event and waveform analysis
 - State-of-health monitoring
 - Data quality monitoring

\(^2\) http://www.quakeml.org
SeisComP Main Features

- Use of de-facto standards for waveform and parameter exchange (QuakeML, SeedLink, ArcLink, FDSN web services)
- Interprocess communication between modules builds on TCP/IP
- Database support for MYSQL, SQLite3, PostgreSQL
- Scripting interface for Python
Operator’s desk with a 4 monitor system connected to the processing server (new warning room)
SeisComP3 users

- ~30 tsunami warning centers
- ~60 universities
- ~50 earthquake monitoring centers
- ~50 research centers
- ~10 commercial companies
Retrieves waveform data from remote stations, archives it and delivers it to clients on request
Modules: **SeedLink**, **slarchive** and **ArcLink**

Processes waveform data automatically and emits derived parameters such as picks, amplitudes, magnitudes, hypocenters and events
Modules: **scmaster**, **scautoloc**, **scautopick**, **scamp**, **scmag** and **scevent**

Provides graphical user interfaces to analyse and verify results and waveforms interactively either in realtime or as post event analysis
Modules: **scrttv**, **scmv**, **scolv** and **scesv**
SeisComP3 components

- **SeedLink**
- **ArcLink**

Acquisition

Processing
- **autopick**
- **autoloc**
- **QC**
- **event associator**

Analysis
- **Map View**
- **Trace View**
- **Locator View**
- **Event View**

Event
- **M 3.5**
- **M 3.5 (A)**
- **M 3.4 (M)**

SeisComP3

June 30, 2014 13 / 37
SeedLink collects waveform data from stations through plugins. Many plugins for various digitizers are available. **SeedLink** is a TCP server and delivers TCP data streams to remote clients on port 18000 (configurable).

slarchive stores the waveforms in an archive (SDS structure).

ArcLink provides the archived data as a TCP server to local/remote clients on port 18001 (configurable).
Waveform server provides real time data with SeedLink and archived data with ArcLink. **Master** is messaging server\(^a\) which handles meta data exchange between SC3 modules and stores objects in a database. Connections are excepted from TCP clients on port 4803. **EventTool** associates origins (locations) to events and chooses the best location and magnitude among all candidates.

\(^a\)based on Spread toolkit http://www.spread.org
SeisComP3 processing & interactive system

Automatic and interactive system each running on a dedicated computer. Both systems are connected to the same messaging and waveform server.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seedlink</td>
<td>Real time data acquisition</td>
</tr>
<tr>
<td>slinktool</td>
<td>SeedLink query interface</td>
</tr>
<tr>
<td>slarchive</td>
<td>Storing waveform data in SDS structure</td>
</tr>
<tr>
<td>arclink</td>
<td>Retrieval of archived waveform data</td>
</tr>
<tr>
<td>arclinktool</td>
<td>ArcLink query interface</td>
</tr>
</tbody>
</table>
SeisComP3 processing modules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scmast</td>
<td>TCP/IP messaging server</td>
</tr>
<tr>
<td>scautopick</td>
<td>Automatic P detector/picker</td>
</tr>
<tr>
<td>scautoloc</td>
<td>Automatic locator</td>
</tr>
<tr>
<td>screloc</td>
<td>Automatic relocator</td>
</tr>
<tr>
<td>scamp</td>
<td>Amplitude calculation</td>
</tr>
<tr>
<td>scmag</td>
<td>Magnitude calculation</td>
</tr>
<tr>
<td>scevent</td>
<td>Event associator</td>
</tr>
<tr>
<td>scqc</td>
<td>Quality parameters of waveforms</td>
</tr>
<tr>
<td>scevtlog</td>
<td>Logging of event states</td>
</tr>
<tr>
<td>scdb</td>
<td>Database storage of parametric data</td>
</tr>
<tr>
<td>scvoice</td>
<td>Acoustic alerts</td>
</tr>
<tr>
<td>scalert</td>
<td>Custom alarms</td>
</tr>
</tbody>
</table>
SeisComP3 analysis modules

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scrttv</td>
<td>Real time trace viewer</td>
</tr>
<tr>
<td>scmv</td>
<td>Map viewer showing the overall situation</td>
</tr>
<tr>
<td>scolv</td>
<td>Revision of processing results and manual picker</td>
</tr>
<tr>
<td>scesv</td>
<td>Event summary viewer</td>
</tr>
<tr>
<td>scqcv</td>
<td>Waveform quality viewer</td>
</tr>
<tr>
<td>scheli</td>
<td>Helicorder</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>scconfig</td>
<td>GUI for configuration of SeisComP3</td>
</tr>
<tr>
<td>wsfdsn</td>
<td>FDSN webservice implementation</td>
</tr>
<tr>
<td>import_inv</td>
<td>Wrapper for inventory converter</td>
</tr>
<tr>
<td>inv2dlsv</td>
<td>Inventory to dataless Seed converter</td>
</tr>
<tr>
<td>invextr</td>
<td>Extracts or removes networks, stations or channels from an inventory XML file</td>
</tr>
<tr>
<td>scinv</td>
<td>Inventory XML merger</td>
</tr>
<tr>
<td>stationconf</td>
<td>Station metadata configurator (the old way)</td>
</tr>
<tr>
<td>scsohlog</td>
<td>State-of-health logging</td>
</tr>
<tr>
<td>scchkcfg</td>
<td>Checks seiscomp configuration for case-sensivity issues</td>
</tr>
<tr>
<td>scdispatch</td>
<td>Sends simple SeisComP3 objects</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td><code>scart</code></td>
<td>Export/import waveforms from/into archive</td>
</tr>
<tr>
<td><code>scbulletin</code></td>
<td>Create event bulletins</td>
</tr>
<tr>
<td><code>scmm</code></td>
<td>Message and performance monitor</td>
</tr>
<tr>
<td><code>scevtls</code></td>
<td>List available events</td>
</tr>
<tr>
<td><code>scevtstreams</code></td>
<td>Extract stream information from events</td>
</tr>
<tr>
<td><code>scimex</code></td>
<td>Import/export for earthquake parameters</td>
</tr>
<tr>
<td><code>scimport</code></td>
<td>Message relaying</td>
</tr>
<tr>
<td><code>scm</code></td>
<td>state-of-health monitor</td>
</tr>
<tr>
<td><code>scxmldump</code></td>
<td>Dumping event parameters to XML</td>
</tr>
<tr>
<td><code>sczip</code></td>
<td>SeisComP3 file (de)compressor</td>
</tr>
</tbody>
</table>
SeisComP3 MapView

Ground motion legend

Triggering station

Station showing the recent ground motion
SeisComP3 MapView

- **Associated Station**
- **Epicenter**
- **Spreading S-Wave**
- **Spreading P-Wave**
- **Earthquake Information (F10)**

Associated Station

Epicenter

Spreading S-Wave

Spreading P-Wave

Earthquake Information (F10)
SeisComP3 EventSummaryView

- Prefered magnitude + depth
- OriginTime + Time ago
- Magnitude information
- Hypocenter information
- Epicenter with MT (optional)
SeisComP3 OriginLocatorView

- Event summary
- Distance residual plot
- Phase table
- Import picks
- ManualPicker
- Commit solution
SeisComP3 OriginLocatorView

Azimuth residual plot

Choose Locator

Choose velocity profile
SeisComP3 OriginLocatorView

Dr. Bernd Weber and Jan Becker (gempa GmbH)

SeisComP Introduction

June 30, 2014 29 / 37
SeisComP3 OriginLocatorView

Moveout plot

Jujuy Province, Argentina

Time: 2011-09-29 07:52:21
Depth: 302 km +/- 10 km

Min. Dist.: 1.8 km
EventID: -
Agency: GEMPA
Author: weber@webertink.pt
Evaluation: confirmed (M)
Method: LOCASAT
Earth model: lasp91
Updated: 2011-11-05 13:35:22

Profile: lasp91
Fix depth: 302 km
Distance cutoff: 1000 km

Scolv
File Edit View Settings Help

Location Magnitudes Event Events

Santa Cruz
La Paz
Cochabamba

Dr. Bernd Weber and Jan Becker (gempa GmbH)

SeisComP Introduction

June 30, 2014 30 / 37
SeisComP3 OriginLocatorView

First motion plot

Dr. Bernd Weber and Jan Becker (gempa GmbH)
SeisComP3 OriginLocatorView

- Zoom trace at bottom
- Align traces
- Choose filter
- Apply
- Sort traces
- Post picker
- Time scale
- Color coded timing quality
Choose component

Pick P/S

Show stations in distance of x

Picks (red/green)

Theoretical arrivals (blue)
http://www.seiscomp3.org