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Abstract 
 

Most commonly used algorithms for locating earthquakes on computers are based 

on an inverse formulation (Geiger, 1912).  Numerous software implementations have 

been made using the Geiger method, which applies the Gauss-Newton nonlinear 

optimization technique to find the origin time and hypocenter by iterative linearized 

steps starting from a trial solution.  Recent advances in earthquake location methods are 

mostly concentrated on obtaining the best relative locations for a group of earthquakes 

using high-quality data (including waveforms) recorded by a dense seismic network 

(e.g., Richards et al., 2006).  However, Geiger-like location programs do not work well 

for poorly constrained earthquakes, because the available arrival times may not be 

sufficient to solve the inverse problem, and the chosen trial solution may lead to a local 

minimum. 

 

A physical problem involving observations is much easier solved by a forward or 

direct formulation, if the large amounts of computations required can be managed. 

Recently, computers became fast enough that the forward approach has been explored 

(e.g., Sambridge and Kennett, 2001; Oye and Roth, 2003). Instead of a brute grid 

search, we use the downhill simplex algorithm to search the neighborhood of thousands 

of grid points that coarsely cover the solution space. The downhill simplex algorithm 

was chosen for its robustness (Press et al., 1986).  Computation is intensive, but a robust 

solution can be found in about 100 seconds on a Pentium 4 PC for a typical case, along 

with a 3-D residuals map for visualizing the solution’s uncertainty. This direct approach 

has three major advantages over the inverse formulation: (1) a global minimum in the 

solution space can be obtained, (2) the computation is simple and straight forward, and 

(3) it can be adapted to perform either a L1-norm or L2-norm minimization.   

 

We are now developing a general software package (JLOC written in Java) with 3-D 

visualization (using MATLAB), specifically for locating earthquakes before 1963 when 
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the available phase data were highly variable in quality, the distributions of the 

recording stations were highly non-uniform, and many earthquakes occurred outside 

existing seismic networks. 

 

 

Introduction 
 

So far, most commonly used algorithms for locating earthquakes on computers are 

based on an inverse formulation, first published by L. C. Geiger (1912). Numerous 

software implementations have been made using the Geiger method, which applies the 

Gauss-Newton nonlinear optimization technique to find the origin time and hypocenter 

by iterative linearization steps starting from a trial solution.   

 

The travel time residuals (i.e., observed minus predicted from a given velocity 

model) of the first P-wave (and sometimes the S-wave and later phases) are minimized, 

usually in the least squares sense (L2 norm), and occasionally in L1 norm.  Waldhauser 

and Ellsworth (2000) introduced the “double- difference” algorithm, which minimizes 

the residuals of travel times differences for pairs of earthquakes observed at common 

stations by iteratively adjusting the vector connecting the hypocenters.  Similar to the 

Joint Hypocentral Determination, JHD, (Pujol, 2003), the double-difference algorithm 

improves “relative” earthquake locations and works well for a good set of arrival times 

with large numbers of stations.  For a comprehensive review of recent earthquake 

location developments, see Richards et al. (2006). In brief, they are all variants of the 

Geiger method based on an inverse formulation, and they are mostly concentrated on 

obtaining the best relative accuracy of the hypocenters for data (including waveforms) 

recorded in a dense seismic network.  

 

The mathematics of the inverse formulation is elegant as shown in the next section, 

and it works well for a good seismic network with stations surrounding the epicenters.  
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However, all existing location programs work poorly for earthquakes outside a seismic 

network, because the available arrival times are not sufficient to solve the problem 

mathematically as shown below (greatly condensed from Lee and Stewart, 1981 p. 105-

139).  We will use bold face symbols to denote vectors or matrices. 

 

 

The Least Squares Method and Nonlinear Optimization 
 

In the least squares method, we attempt to minimize the errors of fit (or residuals) at 

a set of m data points where the coordinates of the kth data point are (x)k, k =1, 2,…, m., 

and x is a vector of n independent variables, i.e., 

   x = (x1, x2,  …,  xn)T              (1) 

where the superscript T denote a vector transpose.  The objective function for the least 

squares problem is 

   F(x) =  ∑ [rk(x)]2               (2)  

where the summation is from k = 1 to m, and rk(x) denotes the evaluation of residual at 

the kth data point.  We may consider these residuals as components of a vector in the m-

dimensional Euclidean space and Equation (1) becomes 

   F(x) = rT r                 (3) 

Taylor expansion of this objective function is 

                  F(x + δx) = F(x) + gT δx + ½ δxT H δx + …         (4) 

Where g is the gradient vector and H, the Hessian matrix, and it can be shown that  

                     δx = - H-1 g              (5) 

 

To find the gradient vector g, we perform partial differentiation on Equation (2) with 

respect to xi , i = 1, 2, …, n, and obtain 

∂F(x)/ ∂xi = ∑ 2 rk(x) [∂rk(x) /∂xi],  i = 1, 2, …., n       (6) 

and the summation is from k = 1 to m.  In matrix notation,  

   g = 2 AT r                 (7) 
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where A is the Jacobian matrix, whose elements are defined by 

 Aki =  ∂rk /∂xi,        k = 1, 2, …, m,   and  i = 1, 2, …, n        (8) 

 

To find the Hessian matrix H, we perform partial differentiation on the set of n 

equations in Equation (6) with respect to xj , for j = 1, 2, …, n, assuming that rk(x), k = 1 

to m, have continuous second derivatives, and obtain  

   H ≅ 2 AT A                          (9) 

by ignoring the cross derivative terms.  Hence, 

   δx = - [AT A]-1 AT  r              (10) 

 

The Geiger’s method is essentially applying the least squares method and using the 

above Gauss-Newton algorithm to solve the earthquake location problem.  Starting from 

a trial origin time and hypocenter, the adjustment vector δx as given in Equation (10) is 

solved.  A new origin time and hypocenter is then obtained and the same procedure is 

repeated again until some cutoff criteria are met.  However, the Jacobian matrix as 

given in Equation (8) is often ill-conditioned for giving a meaningful inverse, and if the 

trial solution is not chosen appropriately, the iterative procedure converges to a local 

minimum, rather than the global minimum.    

 

For the earthquake location problem, the 4 independent variables are: time t, and 

coordinates x, y, and z. The Jacobian matrix A may be written with column vectors as its 

elements: 

   A = ( V1     V2     V3     V4 )             (11) 

where  

   V1  = ( 1             1       •   •   •        1    )T          (12)   

    V2  = (∂t1/∂x    ∂t2/∂x     •   •   •    ∂tm/∂x )T            (13) 

V3  = (∂t1/∂y    ∂t2/∂y     •   •   •    ∂tm/∂y )T          (14) 

V4  = (∂t1/∂z    ∂t2/∂z     •   •   •    ∂tm/∂z )T          (15) 
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where the travel times for m stations are denoted by:  t1,  t2 , …, tm .   Since the travel 

time derivatives with respect to time are 1, vector V1 is a unit vector.  Let us recall that 

the determinant of a matrix is zero if any of its columns is multiple of another column. 

Since the first column of the Jacobian matrix is all 1’s, it is easy for other columns of A 

to be a multiple of it.  E.g., if an earthquake occurs outside the seismic network, it is 

likely that the elements of the ∂t/∂x column, and the corresponding elements of the ∂t/∂y 

will be nearly proportional to each other.  In other words, we do have adequate observed 

data to solve the matrix for meaningful adjustments. 

 

Although the Geiger method was published in 1912, computations are too laborious 

until the electronic computer era in the 1950s. There are many pitfalls in solving a 

problem by the inverse approach primarily because no one has yet found a fool-proof 

technique to guarantee a true solution in nonlinear optimization since Gauss time (about 

two hundred years ago).  Unlike the Fermat’s last theorem (which was solved recently 

after more than 300 hundred years’ efforts), many experts in optimization consider the 

guarantee for a global minimum is unsolvable in an inverse problem. 

 

 

Some Direct Methods for Earthquake Location 
 

Almost all physical problems involving observations are formulated as inverse problems 

simply because solving problems by the method of least squares become so standard 

(since Gauss first popularized it) that few scientists ever question it.  After electronic 

computers became available in the late 1950s, a few visionary scientists realized that it 

is much easier to solve a physical problem involving observations by the forward 

formulation.  Unfortunately it will involve large amounts of computations and 

computers were far too slow at that time.  However, it was adequate for solving most 

inverse problems. When W. H. K. Lee examined the earthquake location problem from 

both the mathematical and computation points of view in the late 1960s, he realized that 
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the computers were about 5 orders of magnitude too slow for the forward formulation 

and thus had to wait. 

 

By the early 2000, computer speed has increased about 10,000 times faster that in the 

1960s, Lee began laying a plan to attach the earthquake location problem by the forward 

formulation approach.  The least squares method of Gauss assumes that the 

observational errors have a normal (or Gaussian) distribution. However, this assumption 

is not appropriate for earthquake arrival times, which often have large outliers. 

 

Lee and Doug Dodge then began investigating the simplex algorithm (Press et al., 1986) 

developed for minimizing the L1 norm (rather than the L2 norm in least squares).  

Recently, they are developing a forward simplex search software for earthquake 

location, and showed that it is practical to use it for relocating large numbers of 

earthquakes, provided a fast multi-processor PC is available. 

 

Several seismologists have been exploring direct search methods, e.g., Sambridge 

(2003) provided a software package for the neighborhood algorithm (NA) as a direct 

search method for nonlinear inversion.  NA had been applied to seismic event location 

by Sambridge and Kennett (2001), and to automated seismic event location by Oye and 

Roth (2003).     

       

 

The JLOC Computer Program: Overview 
 

The JLOC program is an earthquake location program that computes earthquake source 

location parameters using forward modeling and the IASPEI91 Earth model. It uses the 

TauP traveltime calculator Crotwell, H. P., T. J. Owens, and J. Ritsema (1999). 

Locations can be calculated using a grid search followed by a simplex finishing step or 

using the simplex procedure alone. The objective function evaluated by the locator at 
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each point in the solution space is an L1 norm, so the locator is relatively insensitive to 

large outlier observations at a few stations. In grid-search mode, the locator also has the 

ability to remove a subset of observations with the largest residuals prior to the simplex 

finishing step. The locator has an interactive mode in which the operator can visually 

inspect residual distributions and add or remove observations from the solution.  

 

The only required argument is the name of the input phase file. If not specified, the 

output file, summary file, and residual file names will all be based on the input file 

name with extensions “out”, “sum”, and “res” respectively. If the control file is not 

specified, a default set of parameters will be used.   The Box below show below is a 

portion of an input file for the JLOC program. Comments begin with an asterisk. The 

hypocenter line is required and must precede the observation lines. 

 
* File = 1920.157.04.21.35.pha 

* 

* Auth     Year Mo Dy Hr Mn Sec    Latitude  Longitude  Depth 

  Doug     1920 06 05 04 21 35.62  24.0284  122.1706    0.0  

* 

* Code  Phase  Timedef  Ttime  Deltim    Latitude  Longitude  Elev.  Delta  Azimuth Residual  

* 

  HWA0   S-P      d     7.100   1.000     23.967    121.617   0.018    0.51    263.2    -0.000 

  HWA0   P        n    52.380   1.000     23.967    121.617   0.018    0.51    263.2    42.603 

  HWA0   S        n    61.380  10.000     23.967    121.617   0.018    0.51    263.2    44.503 

  TAP0   S-P      d    16.200   1.000     25.033    121.517   0.018    1.16    329.4    -0.000 

  TAP0   P        n    23.980   1.000     25.033    121.517   0.018    1.16    329.4     1.672 

  TAP0   S        n    40.180   1.000     25.033    121.517   0.018    1.16    329.4     1.672 

  TAP    P        n    24.380   1.000     25.039    121.506   0.006    1.17    329.1     1.877 

  TCU0   S-P      d    16.800   1.000     24.150    120.683   0.018    1.36    275.4    -2.188 

  TCU0   P        n     5.680   1.000     24.150    120.683   0.018    1.36    275.4   -20.467 

  TCU0   S        n    22.480   1.000     24.150    120.683   0.018    1.36    275.4   -22.655 

  TAI0   S-P      d    28.700   1.000     23.000    120.217   0.018    2.06    240.7     1.289 

  TAI0   P        n    24.380   1.000     23.000    120.217   0.018    2.06    240.7   -11.526 

  TAI0   S        n    53.080   1.000     23.000    120.217   0.018    2.06    240.7   -10.237 

   

 

Each observation line consists of: 

• Station code 

• Phase 
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• Timedef ( one of ‘n’, ‘d’ ) – – ‘d’ for use in location, ‘n’ not to be used.  

• Travel time (time in seconds relative to the origin time for this phase. 

• Deltim (the standard error of this observation.) 

• Latitude 

• Longitude 

• Elevation 

• Delta (degrees) – – epicentral distance. 

• Azimuth (degrees) – – azimuth angle to station with respect to North. 

• Residual (seconds) 

 

The last four columns are parsed but not currently used by the program. They are 

included because the ISS Summary published these values. The order of the columns 

must be as shown above, but column position is not important. It is only necessary that 

there be white space between the columns. 

 

If JLOC is started in non-interactive mode it will simply calculate a new solution and 

write the results to the summary file, the output file, and the residual file. The summary 

file contains a 1-line summary of the hypocentral parameters: 

• Date       

• Day of Year 

• Time           

• Lat      

• Lon        

• Depth    

• RMS      

• MAR    (Mean Absolute Residual) 

• Nass    (Number of associated phases) 

• Ndef   (Number of defining phases) 
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• Azgap  

• Azgap2    (Secondary azgap) 

• Sigmalat     (Standard error of the latitude) 

• Sigmalon     (Standard error of the longitude) 

• SigmaZ   (Standard error of the depth) 

• Semi-major  (Length of the semi-major axis (km) of the 95% confidence 

ellipse) 

• Semi-minor  (Length of the semi-minor axis (km) of the 95% confidence 

ellipse)  

• Strike  (Strike of the semi-major axis of the 95% confidence ellipse) 

 

The output file contains information from various stages of the solution, the final 

solution hypocentral parameters, and the final state of the observations in the solution. 

The residual file contains the residuals corresponding to each point evaluated during the 

grid search operation. 

 
 
JLOC: Interactive Operation 

 

When JLOC is invoked using the –i command line option, it starts up in interactive 

mode. In this mode the user can easily see the distribution of residuals. The user can 

also interact with the program to change the defining status of selected observations and 

see the effect on the source location. In interactive mode, JLOC reads the input file and 

displays the data on a world map (Figure 1) without attempting a source location. 

Initially, the map is centered on the epicenter given in the input file and the entire world 

is displayed using an equal area azimuthal projection.  

 

The stations are displayed as colored triangles with color determined by the defining 

status of observations at the station and by the residuals of defining observations. 
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Stations with no defining observations are shown in light gray. Stations with one or 

more defining observations have their color determined by the observation with the 

largest residual. The color scale runs from pure green for residual values of 0 sec to pure 

yellow for residual values of 10 sec, and to pure red for residual values of 20 sec. Right-

clicking on any station opens a popup menu that allows the user to change the defining 

status of each observation at that station.  

 

The user can zoom in on a map detail by dragging with the left mouse button (Figure 2). 

The right mouse button un-zooms the map incrementally. By holding the shift key down 

the user can pan the map. 

 

 

The JLOC Toolbar 
 

Most of the functions in JLOC’s interactive mode are controlled using the toolbar 

displayed at the top of the dialog. Three most important toolbar are: 

 
 
The Grid Search Button:  

When clicked, performs a new grid search for the minimum residual location using a 

grid centered on the current epicenter. By default, the grid search is over a region 6 

degrees around the current epicenter using a step size of 1 degree. This can be altered by 

changing values in the control file read by JLOC on startup. The grid search always 

incorporates a simplex finishing step, so normally the only reason to use the grid search 

is if you think the program has gotten stuck in a local minimum. 

 
The Simplex Solution Button:  

When clicked, performs a Simplex search for the location with the minimum residual 

value. The control parameters for the simplex search can be modified by editing the 

control file read by JLOC on startup. After each simplex search is complete, the map is 
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updated with the new solution parameters. The formal 95% confidence ellipse is also 

displayed (See Figure 3 below). This ellipse is calculated using the assumption that the 

data are uncorrelated and have equal variance. In fact, the data variance used in 

generating the ellipse is the average of the deltim squared values, so this statistic has 

room for improvement.   

 

The Display Residual Map Button:  

This is a toggle button that when selected causes computation of residuals over a region 

surrounding a new location. The residuals are displayed as a color contour map 

superimposed over the map. The residual values are displayed using a color map in 

which white corresponds to a residual of zero and black corresponds to the largest 

residual computed (see Figure 4).  

 
 
Visualization using MATLAB 

 

JLOC writes a grid of residual values for the final solution at user-specified spacing to a 

file for further processing.  We use MATLAB to visualize these results.  The JLOC grid 

of residual values is converted to a 3-D 50 x 50 x 50 grid (~1 MB).  To geographically 

locate the study area, we project the surface of the 3-D residuals grid onto a Mercator 

map of the nearby coastline, colored by the residual value, in seconds (Figure 5). 

 

To visualize the structure of the residual data values, we compute vertical slices of the 

data through the final hypocenter and isosurfaces for the data at 1, 2, 4, and 8 seconds.  

Figure 6 shows a 3-D view of the slices.  The X-axis is longitude, the Y-axis is latitude, 

and the Z-axis is km depth.  Color is residual value, in seconds; the colorbar legend is 

on the right.  The surface coastline fragment is drawn in black. 
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Figure 7 adds the isosurfaces to Figure 6, which are also colored by residual value.  The 

minimum residual value is 2.106 sec, so the only isosurfaces are for 4 and 8 seconds.  

The slices have transparency that varies with residual value: the larger the residual 

value, the more transparent the slice becomes.  The isosurfaces are opaque and are 

illuminated for better discrimination by an artificial light source from above and left at 

infinity.  The crescent shape in the northwest portion of the solution that can be seen in 

Figure 5 is clearly seen in the structure of the 4 second isosurface (yellow). 

 
 
Conclusions 

 

We demonstrated that a general software package (JLOC written in Java) can locate 

earthquakes that have phase data of highly variable in quality, or have the recording 

stations highly non-uniform in distribution, or occur outside existing seismic networks.  

Because earthquakes offshore of Taiwan are located outside of the CWB current seismic 

network, this JLOC software will help CWB to find more reliable locations of these 

earthquakes in their routine operation, and to relocate old earthquakes. 

 

Forward formulation can solve many more seismological problems, including seismic 

tomography. Many seismological problems involve the Greens function, and Greens 

function is an inverse operator, as pointed out by Lanczos (1961). The forward 

formulation will usher a new era in research because computers are now fast enough to 

make the forward approach practical. 
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Figure 1. The interactive residual map displayed when JLOC is invoked in 

interactive mode. 
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Figure 2. Example map after zoom in to a region around the epicenter. 
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Figure 3. Example map after zoom in to a region around the epicenter with the 

formal 95% confidence ellipse. 
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Figure 4. Example map with contour map of residuals superimposed on the 

solution. 



 20

 

 

 
 

 

Figure 5. Mercator map of the study area and residual values at the surface. 

Color is residual value, in seconds; the colorbar legend is on the right.  The 

world coastline data file and the map projection functions used are from the 

MATLAB Mapping Toolbox. 
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Figure 6.  3-D view of vertical slices through the final solution (see text for 

explanations).   
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Figure 7.  3-D view of vertical slices and isosurfaces (see text for explanation).  

 


