### Data Report No. 0103

William Lutter and Clifford Thurber (University of Wisconsin-Madison)

# 1985 Kenya Rift International Seismic Project (KRISP 85) Teleseismic Experiment

The 1985 Kenya Rift International Seismic Project (KRISP 85) teleseismic experiment consisted of two arrays (Figure 1), a 110 x 100 km two-dimensional array (Green et al., 1991) and a 500-km long E-W linear array (Dahlheim et al., 1985). Both arrays crossed the central portion of the East Africa rift. The University of Wisconsin-Madison segment, a 2-dimensional reconnaissance P-wave experiment, was designed to investigate a Bouguer gravity anomaly aligned along the rift axis. Event data collected by the UW array are being made publicly available through the IRIS DMC as part of an NSF-supported project to archive historic UW-Madison digital seismic datasets collected by the research group of Prof. R. P. Meyer. In addition, event data from the concurrent E-W linear array are provided with the UW array data.

The UW teleseismic experiment was positioned to overlay much of the KRISP 85 refraction experiment in order to use the refraction data to constrain teleseismic-derived velocity models (Green, 1993; Green and Meyer, 1992; Green et al., 1991). The University of Wisconsin-Madison deployed fifteen 3-component digital seismographs in a 110 x 100 km array (Figure 1) from September 1 to December 15, 1985. Twenty-three sites were occupied due to relocation of several seismographs (see Table 1 for locations of the UW stations). During the 3 1/2 months of operation of the UW array, 84 teleseisms identified by the USGS (PDE) were recorded by 5 or more UW sites (Table 3). Of these, 27 events with near-vertical incidence arrivals (PKP) were analyzed by Green and Meyer (1992).

The University of California Los Angeles (UCLA) simultaneously operated 17 seismograph stations deployed on the E-W linear array which traversed the UW array (Dahlheim et al., 1989). Data from 12 of these sites (see Table 2 and Figure 1) are provided in this data report along with the UW instrumented data. Dahlheim et al. (1989) report 40 good quality events were recorded by the UCLA E-W profile. Data from 52 events are provided with this data report (see Table 4) including 22 events recorded by both arrays.

## **Data Collection and Processing**

The University of Wisconsin instruments, equipped with HS10-1 1Hz natural frequency seismometers, were set to selectively trigger on teleseismic events and to record for 160 s at 50 samples/sec. The data have been assembled in the form of day volumes containing events listed in Table 3. The UW event data was preserved as SAC files containing station and timing information within the headers. The UCLA instruments used were 8 UCLA Digital Cartridge tape recorders, 3 Lennartz PCM 5800 and 3 Sprengnether DR100.(Dahlheim et al., 1989) and were set to record at 20 samples/s. Chronometers were checked every 4 to 8 days using traveling clocks set to Moscow radio time signals (Green, 1991). SAC file headers contain timing, station, and event information.

#### **Tape Provided**

The data archive consists of one DAT tape with the event- and day-volume data (in SAC format), this report in postscript and RTF formats, and miscellaneous information.

## **UW Seismic Recorders**

The University of Wisconsin-Madison portable digital seismic recorders are wide-dynamic-range instruments (106 dB) designed for recording seismic waves from earthquakes or explosions (Table 5) [Powell, 1983]. Data from 1-Hz Hall-Sears HS-10-1 geophones were recorded at 50-Hz sampling rates, with a 4-pole Butterworth anti-aliasing filter at 12.5 Hz. A 13.6 kHz Omega receiver incorporated in each seismograph recorded data from the worldwide Omega navigational network concurrently with seismic signals. A timing-correction process developed for application to the UW seismic recorders provides 1/4 sample rms time error relative to Universal Time [Schneider et al., 1987]. Ground motion may be estimated from an average value for voltage sensitivity of 150 V/m/s for the UW Hall-Sears geophones.

### **Related publications:**

Dahlheim, H., P. Davis, and U. Achauer, Teleseismic investigation of the East African Rift - Kenya, U. J. Afric. Earth Sci., 8, 461-470, 1989.

Green, W. Verney., Lithospheric Seismic Structure of the Cenozoic Kenya Rift and the Precambrian Midcontinent Rift from Teleseismic Tomography, Ph.D.. Thesis – University of Wisconsin-Madison, 178 pp., 1993

- Green, W., and R. Meyer, Array observations of PKP phases across the Kenya Rift: Implications for structure and tectonics, *Tectonophysics*, 204, 41-58, 1992.
- Green, W., U. Achauer, and R. Meyer, A three-dimensional seismic image of the crust and upper mantle beneath the Kenya rift, *Nature*, *354*, 199-203, 1991.
- Powell, L.A., Engineering Description of the U.W. Portable Digital Seismograph, Proceedings of the Committee on Controlled Source Seismology (CCSS), Workshop on Portable Digital Seismograph Development, Los Altos, California, 121-122, 1983.
- Schneider, J.F., R.C. Aster, L.A. Powell, and R.P. Meyer, Timing of portable seismographs from Omega navigation signals, Bull. Seismo. Soc. Am., 77, 1457-1478, 1987.



<u>Figure 1</u>. Map of the 22 UW station (triangle) and 12 of 19 UCLA stations (circle) of the KRISP 85 Teleseismic Experiment are displayed in the lower panel. The 84 teleseismic events recorded by the UW array (triangle) and 52 events recorded by the UCLA array (circle) are displayed in the upper panel. Twenty-two events were recorded by both sets of instruments. These 12 UCLA stations were available from UW tar tapes and are provided in this data report with the archiving of the UW instrumented KRISP85 teleseismic data set.

| Station ID | Latitude | Longitude | Elev(m) | Name        |
|------------|----------|-----------|---------|-------------|
| 1          | -1.438   | 36.657    | 1980    | Ngong       |
| 2          | -1.493   | 36.481    | 1020    | Emerit      |
| 3          | -1.349   | 36.137    | 1430    | Mosiro      |
| 4          | -1.441   | 35.829    | 1850    | Narosura    |
| 5          | -1.054   | 36.577    | 1750    | Mayer's     |
| 6          | -1.058   | 36.285    | 1640    | Susaa       |
| 7          | -1.160   | 35.917    | 1910    | Narok       |
| 8          | -0.810   | 36.676    | 2500    | South       |
| 9          | -0.787   | 36.285    | 1920    | Naivasha    |
| 10         | -0.743   | 35.973    | 2770    | Suypeo      |
| 11         | -0.824   | 35.906    | 2460    | Enabelibel  |
| 12         | -0.584   | 36.635    | 2640    | North       |
| 13         | -0.463   | 36.223    | 1790    | Elementeita |
| 14         | -0.463   | 36.036    | 2060    | Kiriri      |
| 15         | -0.895   | 36.090    | 2880    | Melili      |
| 16         | -0.744   | 36.262    | 1920    | Ndabibi     |
| 17         | -0.524   | 36.667    | 3220    | Aberdare    |
| 18         | -1.042   | 36.656    | 2220    | Uplands     |
| 19         | -0.744   | 36.262    | 1920    | Melili      |
| 20         | -1.264   | 36.099    | 1670    | Mosiro      |
| 21         | -1.160   | 35.917    | 1910    | Narok       |
| 22         | -1.507   | 35.756    | 2000    | Narosura    |
| 23         | -1.058   | 36.255    | 1700    | Susua       |

Table 1. Locations of UW stations deployed in KRISP85 Teleseismic Experiment.

| StationId | Latitude  | Longitude | elev(m) | Name           |
|-----------|-----------|-----------|---------|----------------|
| K01       | -1.23517  | 35.023    | 1680    | Masai Mara     |
| K01       | -1.23317  | 35.0257   | 1680    | After 10/11/85 |
| K02       | -1.18667  | 35.25     | 1780    | Aitong         |
| K03       | -1.152    | 35.5833   | 1925    | Ngorengore     |
| K04       | -1.12933  | 35.782    | 1920    | Narok          |
| K06       | -1.08833  | 36.4243   | 1595    | Mt.Suswa       |
| K10       | -0.9675   | 37.4727   | 1130    | Ekarakara      |
| K11       | -0.964    | 37.7095   | 1100    | Kaewa          |
| K12       | -0.831833 | 38.0855   | 960     | Mwingi         |
| K13       | -0.83     | 38.339    | 770     | Nguni          |
| K15       | -0.733    | 38.8095   | 570     | Katumba        |
| K16       | -0.6275   | 39.2788   | 290     | Kzzz           |
| K17       | -0.420833 | 39.6313   | 140     | Garissa        |

| Table 2. Locations of UCLA stations deployed in the KRISP85 Teleseismic Expe | eriment. |
|------------------------------------------------------------------------------|----------|
|------------------------------------------------------------------------------|----------|

| Id  | Name       | m:d:yr   | hr:mn:sc   | latitude | longitude | Depth    | Mag | #      | Directory    |
|-----|------------|----------|------------|----------|-----------|----------|-----|--------|--------------|
| 1   | fiji       | 08:28:85 | 20:50:49.0 | -21.000  | -178.990  | 629      | 6.1 | 6      | W240         |
| 2   | s sand     | 08:29:85 | 06:13:10.8 | -57.243  | -025.333  | 50       | 5.6 | 5      | W241         |
| 3   | <br>xinjia | 08:29:85 | 23:39:48.8 | 39.441   | 075.452   | 17       | 5.2 | 8      | W241         |
| 4   | nphili     | 08:30:85 | 20:27:10.7 | 16.982   | 119.938   | 29       | 5.4 | 8      | W242         |
| 5   | yunnan     | 09:01:85 | 19:07:42.2 | 23.769   | 102.738   | 10       | 5.0 | 8      | W244         |
| 6   | minaha     | 09:01:85 | 22:25:34.1 | 00.665   | 121.430   | 83       | 5.1 | 9      | W244         |
| 7   | halmah     | 09:03:85 | 23:32:47.5 | 01.409   | 128.153   | 114      | 5.7 | 10     | W246         |
| 8   | banda      | 09:05:85 | 03:53:12.0 | -07.364  | 128.472   | 143      | 5.3 | 6      | W248         |
| 9   | tonga      | 09:05:85 | 06:34:58.0 | -18.559  | -173.632  | 33       | 4.6 | 5      | W248         |
| 10  | ceram      | 09:07:85 | 00:22:01.5 | -03.079  | 130.348   | 26       | 5.6 | 7      | W250         |
| 11  | ceram      | 09:07:85 | 04:40:30.0 | -03.136  | 130.279   | 24       | 5.5 | 7      | W250         |
| 12  | qreece     | 09:07:85 | 10:20:50.2 | 37.445   | 021.235   | 31       | 5.3 | 8      | W250         |
| 13  | tonga      | 09:11:85 | 17:47:31.0 | -15.350  | -173.540  | 30       | 5.8 | 10     | W254         |
| 14  | xinjin     | 09:11:85 | 20:45:49.5 | 39.356   | 075.407   | 15       | 5.8 | 10     | W254         |
| 15  | sphili     | 09:11:85 | 22:07:10.7 | 13.594   | 120.893   | 135      | 4.9 | 7      | W254         |
| 16  | oaxaca     | 09.15.85 | 07.57.53 6 | 17 980   | -097 160  | 63       | 6 0 | 5      | W258         |
| 17  | tonga      | 09:15:85 | 11:25:05.3 | -19.220  | -175,600  | 258      | 5.6 | 8      | W258         |
| 18  | tonga      | 09:15:85 | 17:31:00.6 | -16.800  | -174.870  | 81       | 5.7 | 9      | W258         |
| 19  | sumba      | 09.15.85 | 22.58.42 6 | -10 809  | 119 298   | 39       | 54  | 5      | W258         |
| 2.0 | tonga      | 09.16.85 | 02:54:02 0 | -15 296  | -174 153  | 139      | 4 9 | 7      | W259         |
| 21  | iran       | 09.18.85 | 00.10.34 8 | 31 627   | 049 447   | 23       | 5 2 | 5      | W261         |
| 22  | tonga      | 09:10:05 | 08:06:21 0 | -18 060  | -175 540  | 302      | 4 9 | 7      | W261<br>W262 |
| 22  | michoa     | 09.19.05 | 13.17.50 1 | 18 540   | -102 553  | 202      |     | ,<br>8 | W262         |
| 2.5 | taiwan     | 09.20.85 | 15.01.22 5 | 24 593   | 122.333   | 10       | 5.2 | 5      | W262         |
| 24  | Calwall    | 09.20.85 | 01.27.15 1 | 17 010   | 101 600   | 10       | 5.5 | 7      | W203         |
| 25  | gueile     | 09.21.85 | 10.22.12.2 | 12 510   | -101.090  | 42       | 57  | 6      | W264<br>W265 |
| 20  | banda      | 09:22:05 | 10:23:12.2 | 12.510   | 120 027   | 147      | 5.7 | 0      | W265         |
| 27  | Danua      | 09:24:85 | 20:28:52.4 | -06.405  |           | 147      | 5.0 | 9      | W267<br>W269 |
| 20  | tongo      | 09.25.85 | 07:00:43.7 | 16 000   | 172 200   | 10       | 2.5 | 0      | W200         |
| 29  | kormad     | 09:26:05 | 04:10:22.0 | -10.000  | -179 570  | 41<br>16 | 4.7 | 0      | W269<br>W269 |
| 21  | Relinau    | 09:20:85 | 07:27:47.0 | -34.010  | 1 = 0 = 0 | 22       | 6.2 | 12     | W209         |
| 22  | tongo      | 09:27:05 | 10.10.15 0 | -09.010  | 174 600   | 11       | 6.2 | 9      | W270         |
| 22  | conga      | 09:27:85 | 10:10:15.9 | -22.179  | -174.000  |          | 0.Z | 9      | W270         |
| 33  | crete      | 09:27:85 | 16:39:48.7 | 34.506   | 026.599   | 61<br>10 | 5.6 | 10     | W270         |
| 34  | Longa      | 09:28:85 | 05:50:39.0 | -20.910  | -174.090  | 18       | 5.1 | 5      | WZ/L<br>WO71 |
| 35  | yugosi     | 09:28:85 | 14:50:15.2 | 41.581   | 022.254   | /        | 5.0 | 9      | W2/1         |
| 36  | spnili     | 10:01:85 | 10:01:44.8 | 13.669   | 120.766   | 119      | 4.6 | 5      | W274         |
| 37  | nina_k     | 10:02:85 | 21:31:36.4 | 36.4/3   | 070.139   | 217      | 4.8 | 6      | W275         |
| 38  | arghan     | 10:03:85 | 15 17 07 1 | 36.500   | 071.604   | 80       | 5.4 | 8      | W276         |
| 39  | malaga     | 10:04:85 | 15:1/:0/.1 | -18.304  | 048.433   | 10       | 5.3 | 8      | W2//         |
| 40  | canada     | 10:05:85 | 15:24:02.2 | 62.237   | -124.226  | 10       | 6.5 | 12     | W278         |
| 41  | vanuat     | 10:06:85 | 12:00:49.2 | -18.961  | 169.432   | 273      | 5.7 | 9      | W279         |
| 42  | java       | 10:09:85 | 01:15:04.6 | -06.791  | 107.082   | 154      | 5.9 | 11     | W282         |
| 43  | alaska     | 10:09:85 | 09:33:32.4 | 54.765   | -159.613  | 30       | 6.2 | 9      | W282         |
| 44  | tiji       | 10:12:85 | 02:12:57.9 | -21.656  | -176.382  | 155      | 5.9 | 11     | W285         |
| 45  | el_sal     | 10:12:85 | 20:29:20.8 | 13.154   | -089.720  | 42       | 5.4 | 5      | W285         |
| 46  | c_atla     | 10:12:85 | 22:20:38.0 | 00.917   | -029.921  | 10       | 5.4 | 9      | W285         |
| 47  | tajik<br>- | 10:13:85 | 15:59:51.2 | 40.301   | 069.823   | 16       | 5.8 | 12     | W286         |
| 48  | nnatla     | 10:18:85 | 01:44:28.9 | 56.757   | -034.119  | 10       | 5.2 | 5      | W291         |
| 49  | carlsb     | 10:18:85 | 16:55:30.9 | 04.454   | 062.660   | 10       | 5.2 | 6      | W291         |
| 50  | sphili     | 10:19:85 | 20:51:20.8 | 10.460   | 125.157   | 42       | 5.3 | 7      | W292         |
| 51  | kermad     | 10:20:85 | 21:36:40.1 | -29.012  | -178.773  | 256      | 5.4 | 5      | W293         |
| 52  | java       | 10:25:85 | 06:47:04.7 | -09.203  | 105.595   | 10       | 5.4 | 5      | W298         |

Table 3. Locations of UW events recorded by the KRISP85 Teleseismic Experiment.

| 53 | banda  | 10:25:85 | 18:12:19.5 | -07.077 | 124.284  | 596 | 5.9 | 8 | W298 |
|----|--------|----------|------------|---------|----------|-----|-----|---|------|
| 54 | algeri | 10:27:85 | 19:34:57.1 | 36.460  | 006.761  | 10  | 5.5 | 9 | W300 |
| 55 | fiji   | 10:27:85 | 22:35:18.0 | -17.717 | -178.835 | 565 | 5.4 | 7 | W300 |
| 56 | tanimb | 10:28:85 | 10:28:14.5 | -07.331 | 130.850  | 33  | 5.3 | 5 | W301 |
| 57 | tonga  | 10:28:85 | 12:52:31.2 | -15.400 | -175.990 | 33  | 5.5 | 8 | W301 |
| 58 | sumatr | 10:29:85 | 05:19:26.4 | -05.713 | 103.110  | 33  | 5.2 | 8 | W302 |
| 59 | iran   | 10:29:85 | 13:13:44.6 | 36.681  | 054.750  | 53  | 6.0 | 5 | W302 |
| 60 | tonga  | 11:04:85 | 22:43:25.0 | -17.010 | -174.630 | 144 | 4.8 | 7 | W308 |
| 61 | s_sand | 11:06:85 | 08:15:39.6 | -58.716 | -026.223 | 132 | 5.7 | 8 | W310 |
| 62 | tonga  | 11:06:85 | 22:16:16.9 | -16.370 | -173.270 | 50  | 5.1 | 8 | W310 |
| 63 | turkey | 11:07:85 | 08:26:21.4 | 40.310  | 042.307  | 33  | 5.1 | 7 | W311 |
| 64 | n_zeal | 11:07:85 | 19:12:31.8 | -35.210 | -179.320 | 49  | 6.2 | 9 | W311 |
| 65 | timor  | 11:09:85 | 12:56:12.1 | -09.818 | 123.739  | 26  | 5.5 | 9 | W313 |
| 66 | greece | 11:09:85 | 23:30:42.9 | 41.262  | 023.988  | 22  | 5.4 | 9 | W313 |
| 67 | nsatla | 11:10:85 | 19:40:34.0 | -29.010 | -013.165 | 10  | 5.5 | 8 | W314 |
| 68 | nsatla | 11:14:85 | 02:11:45.6 | -28.912 | -013.109 | 10  | 5.3 | 7 | W318 |
| 69 | ssatla | 11:16:85 | 01:56:43.1 | -47.143 | -013.397 | 10  | 5.2 | 7 | W320 |
| 70 | m_indi | 11:16:85 | 04:12:18.8 | -38.577 | 078.368  | 10  | 5.8 | 7 | W320 |
| 71 | irian  | 11:17:85 | 09:40:21.2 | -01.639 | 134.911  | 10  | 6.0 | 5 | W321 |
| 72 | nsatla | 11:18:85 | 18:18:34.7 | -32.298 | -013.364 | 10  | 5.4 | 6 | W322 |
| 73 | java   | 11:20:85 | 02:49:44.8 | -10.449 | 111.817  | 33  | 5.1 | 7 | W324 |
| 74 | moluca | 11:21:85 | 02:27:18.7 | 02.374  | 126.729  | 68  | 5.4 | 7 | W325 |
| 75 | albani | 11:21:85 | 21:57:14.9 | 41.703  | 019.388  | 25  | 5.5 | 9 | W325 |
| 76 | s_sand | 11:24:85 | 21:32:41.8 | -59.450 | -024.842 | 37  | 5.3 | 5 | W328 |
| 77 | java   | 11:25:85 | 16:26:30.4 | -08.649 | 108.495  | 68  | 5.1 | 5 | W329 |
| 78 | vanuat | 11:28:85 | 02:25:42.6 | -14.030 | 166.220  | 33  | 6.0 | 6 | W332 |
| 79 | vanuat | 11:28:85 | 03:49:55.5 | -13.980 | 166.100  | 43  | 6.2 | 6 | W332 |
| 80 | vanuat | 11:28:85 | 06:37:47.0 | -13.850 | 166.260  | 25  | 5.6 | 6 | W332 |
| 81 | at-ind | 11:30:85 | 02:28:11.5 | -29.235 | 061.253  | 10  | 5.6 | 6 | W334 |
| 82 | tonga  | 11:30:85 | 03:04:18.8 | -16.366 | -174.197 | 165 | 5.7 | 6 | W334 |
| 83 | talaud | 12:14:85 | 06:46:11.7 | 03.683  | 126.600  | 22  | 5.8 | 5 | W348 |
| 84 | arabia | 12:14:85 | 18:13:31.5 | 14.712  | 057.999  | 10  | 5.5 | 6 | W348 |

| evt | name         | lat     | lon      | depth | yr   | day | UW Id |
|-----|--------------|---------|----------|-------|------|-----|-------|
| 1   | eq8510192051 | 10.270  | 125.900  | 42.0  | 1985 | 292 | 50    |
| 2   | eq8510230049 | -11.600 | 125.900  | 14.0  | 1985 | 296 |       |
| 3   | eq8510250647 | -9.120  | 105.350  | 10.0  | 1985 | 298 | 52    |
| 4   | eq8510251812 | -7.400  | 124.170  | 596.0 | 1985 | 298 | 53    |
| 5   | eq8510281028 | -7.190  | 130.510  | 61.0  | 1985 | 301 | 56    |
| 6   | eq8510291313 | 36.400  | 54.450   | 53.0  | 1985 | 302 | 59    |
| 7   | eq8511021553 | 0.000   | 123.520  | 119.0 | 1985 | 306 |       |
| 8   | eq8511030357 | 23.350  | 91.300   | 33.0  | 1985 | 307 |       |
| 9   | eq8511030423 | 0.170   | 121.580  | 157.0 | 1985 | 307 |       |
| 10  | eq8511042123 | 13.400  | 120.110  | 77.0  | 1985 | 308 |       |
| 11  | eq8511060815 | -58.430 | -26.130  | 132.0 | 1985 | 310 | 61    |
| 12  | eq8511062216 | -16.110 | -173.190 | 33.0  | 1985 | 310 | 62    |
| 13  | eq8511071912 | -35.150 | -179.200 | 44.0  | 1985 | 311 | 64    |
| 14  | eq8511080838 | 6.370   | 124.900  | 46.0  | 1985 | 312 |       |
| 15  | eq8511091256 | -9.490  | 123.440  | 26.0  | 1985 | 313 | 65    |
| 16  | eq8511101940 | -29.000 | -13.900  | 10.0  | 1985 | 314 | 67    |
| 17  | eq8511102046 | -6.580  | 129.110  | 160.0 | 1985 | 314 |       |
| 18  | eq8511111216 | -3.200  | 129.440  | 73.0  | 1985 | 315 |       |
| 19  | eq8511121543 | 1.540   | 127.110  | 114.0 | 1985 | 316 |       |
| 20  | eq8511140211 | -28.540 | -13.600  | 10.0  | 1985 | 318 | 68    |
| 21  | eq8511150539 | 13.500  | -88.410  | 89.0  | 1985 | 319 |       |
| 22  | eq8511151035 | -47.130 | -13.230  | 10.0  | 1985 | 319 |       |
| 23  | eq8511160156 | -47.800 | -13.230  | 10.0  | 1985 | 320 | 69    |
| 24  | eq8511162330 | -38.340 | 78.220   | 10.0  | 1985 | 320 |       |
| 25  | eq8511181818 | -32.170 | -13.210  | 10.0  | 1985 | 322 | 72    |
| 26  | eq8511191403 | 28.400  | 128.520  | 135.0 | 1985 | 323 |       |
| 27  | eq8511200249 | -10.260 | 111.490  | 33.0  | 1985 | 324 | 73    |
| 28  | eq8511210227 | 2.220   | 126.430  | 68.0  | 1985 | 325 | 74    |
| 29  | eq8511212157 | 41.420  | 19.230   | 25.0  | 1985 | 325 | 75    |
| 30  | eq8511241042 | 9.100   | -40.370  | 10.0  | 1985 | 328 |       |
| 31  | eq8511242132 | -59.270 | -24.500  | 37.0  | 1985 | 328 | 76    |
| 32  | eq8511251626 | -8.380  | 108.290  | 68.0  | 1985 | 329 | 77    |
| 33  | eq8511260027 | 22.340  | 121.560  | 27.0  | 1985 | 330 |       |
| 34  | eq8511261005 | 24.800  | 125.100  | 21.0  | 1985 | 330 |       |
| 35  | eq8511261323 | 24.800  | 125.800  | 35.0  | 1985 | 330 |       |
| 36  | eq8511280349 | -13.590 | 166.110  | 33.0  | 1985 | 332 | 79    |
| 37  | eq8511281740 | -8.400  | 30.000   | 10.0  | 1985 | 332 |       |
| 38  | eq8511300304 | -16.220 | -174.110 | 165.0 | 1985 | 334 | 89    |
| 39  | eq8512010616 | -16.320 | 66.420   | 10.0  | 1985 | 335 |       |
| 40  | eq8512031242 | -11.190 | 118.150  | 33.0  | 1985 | 337 |       |
| 41  | eq8512072126 | 0.260   | 66.590   | 10.0  | 1985 | 341 |       |
| 42  | eq8512081335 | 30.550  | 86.350   | 37.0  | 1985 | 342 |       |
| 43  | eq8512081424 | 30.530  | 86.320   | 33.0  | 1985 | 342 |       |
| 44  | eq8512091158 | -5.390  | 105.490  | 148.0 | 1985 | 343 |       |
| 45  | eq8512121238 | -6.430  | 108.100  | 251.0 | 1985 | 346 |       |
| 46  | eq8512140646 | 3.410   | 126.360  | 22.0  | 1985 | 348 | 83    |
| 47  | eq8512141813 | 14.420  | 57.590   | 10.0  | 1985 | 348 | 84    |
| 48  | eq8512170013 | -36.000 | 53.300   | 10.0  | 1985 | 351 |       |
| 49  | eq8512170049 | -36.100 | 53.270   | 10.0  | 1985 | 351 |       |
| 50  | eq8512170654 | 24.530  | 67.230   | 33.0  | 1985 | 351 |       |
| 51  | eq8512171447 | 3.440   | 126.390  | 33.0  | 1985 | 351 |       |
| 52  | eq8512171456 | -4.270  | 128.250  | 228.0 | 1985 | 351 |       |

Table 4. Locations of UCLA events recorded by the KRISP85 Teleseismic Experiment.

Table 5. General specifications, University of Wisconsin-Madison digital 3-component recorders

| DATA STORAGE:<br>CAPACITY:<br>FORMAT:  |                      | 5" reel 1/4" tape,<br>20 Mbyte<br>4-track; 3-channe                                                        | 1800 feet<br>el + error correc                                                                        | or<br>tion                                                                | SCSI 3-1                                       | /2" disk<br>210 Mbyte<br>multi-stream packet |
|----------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|
| DYNAMIC RANGE:                         |                      | 106 dB                                                                                                     | Noise = $0.25 \mu$                                                                                    | VP-P                                                                      |                                                | Clipping = 0.05 V P-P                        |
| CALIBRATION:                           | Random               | binary sequence a coils through a bi                                                                       | and step current<br>ridge (at program                                                                 | applied to s<br>mmed start t                                              | seismome<br>times)                             | ter                                          |
| PASSBAND:                              |                      | Low end: 2 pole:<br>High end: 4-pole                                                                       | s at 0.09 Hz<br>Butterworth at                                                                        | (0.25 * sam                                                               | ple rate)                                      |                                              |
| SAMPLE RATE:                           | 25, 50, 1            | 100, 200, 400 sam                                                                                          | ples/second                                                                                           |                                                                           |                                                |                                              |
| PRE-EVENT DELAY:                       | 512, 102             | 24, 2048 samples/o                                                                                         | channel                                                                                               |                                                                           |                                                |                                              |
| MODES:                                 |                      | Programmed and                                                                                             | /or multiple-mo                                                                                       | de triggered                                                              | 1                                              |                                              |
| PROGRAMMING:                           |                      | Time (ddd – hr:m<br>calibrate, trigger                                                                     | nn:sc), repeat in arm and disarm                                                                      | terval and co<br>(24 entries)                                             | ount for r<br>)                                | un,                                          |
| RUN TIMES:                             |                      | Programmable to programmed limi                                                                            | 1000 minutes i<br>ts on total recor                                                                   | n 1 sec step<br>ding time fo                                              | s with opport or each m                        | ional<br>ode                                 |
| TRIGGER HARDWARE:<br>TRIGGER SOFTWARE: | : STA/de<br>Three fr | ayed LTA ratio; b<br>equency band Wa<br>teleseismic, regio                                                 | roadband or tel<br>lsh transform fi<br>nal, and noise;                                                | eseismic filt<br>lter to discri<br>with indepe                            | tered<br>minate<br>ndent run                   | times                                        |
| STATUS REVIEW:                         |                      | Omega signal, tirr<br>recorded and time<br>seismometer peri                                                | ne, configuratio<br>e used for each<br>od and damping                                                 | n, schedules<br>mode, times<br>g                                          | s, number<br>s of last 5                       | of events<br>00 events,                      |
| TIMING INTERNAL:<br>EXTERNAL:          | 1 mHz 7              | TCXO, +/- 1 x 10 <sup>-</sup><br>13.6 kHz Omega<br>coverage (except<br>Post-processing t<br>1/4 sample RMS | <sup>6</sup> over temperat<br>VLF phase reco<br>Antarctica and<br>ime corrections<br>time error relat | ture range<br>orded with s<br>central Grea<br>: +/- 1 x 10<br>ive to U.T. | seismic da<br>enland)<br><sup>-8</sup> oscilla | ta; worldwide<br>tor error;                  |
| POWER:                                 |                      | 12.5 V DC +/- 20<br>40 ma average cu<br>400 ma average cu<br>50 ma average cu                              | %<br>arrent waiting for<br>current recording<br>arrent recording                                      | or trigger<br>g to tape<br>to disk                                        |                                                |                                              |
| DIMENSIONS:                            | 56 x 33              | x 40 cm                                                                                                    |                                                                                                       |                                                                           |                                                |                                              |
| WEIGHT:                                |                      | 22 kg                                                                                                      |                                                                                                       |                                                                           |                                                |                                              |
| TEMPERATURE:                           |                      | 0 deg to 50 deg C<br>-20 deg to 70 dec<br>-40 deg to 80 deg                                                | C normal range (<br>C reduced speces<br>C storage                                                     | (tape operate<br>c. (disk oper                                            | es to 0 de<br>rates to -2                      | g C)<br>20 deg C)                            |