LC2000 Generalized Response and Calibration Factor

These calculations are for the generalized case where we assume that input signal is in the sensor frequency range giving a flat response. Frequency response ranges for various sensors are indicated.

SENSOR RESPONSE INFO:

For the custom High-Tech Hydrophone (HTI-90-U) the manufacturer calibration files give a sensitivity of -182.7 dB re 1V/ μ Pa. This hydrophone loses ~2 dB in sensitivity per ~6000m in depth (10,000 psi) so for typical ocean depth around 3km we correct ~1 dB and use -183.7 dB re 1V/ μ Pa. Using amplitude spectra throughout (e.g. X[db] =20*log10[X/Xref]), this gives S(hyd) = 10**(-183.7/20) * 1V/ μ Pa = .653 mV/Pa (@ 3000m water depth). Thus:

S(hyd) = 0.653 mV/Pa

flat response: 0.05 Hz to 7.5 kHz (@ 3000m depth)

For the L22D seismometer sensitivity:

transduction constant --> 1.61 * sqrt(R-coil) V/m/s with R-coil = 510 ohm nominally this gives 36.359 V/m/s. SIO uses 71% coil current damping (R-shunt = 2k ohm) which gives:

S(I22) = 29.0 V/m/s

flat response: ~2 Hz and above

For the L28LB seismometer sensitivity:

transduction constant --> 1.57 * sqrt(\hat{R} -coil) V/m/s with R-coil = 395 ohm nominally this gives 31.299 V/m/s. SIO uses 77% coil current damping (R-shunt = 2k ohm) which gives:

S(I28) = 26.1 V/m/s flat response: ~4.5 Hz and above

For the Trillium-40 seismometer sensitivity: the manufacturer quotes 1500 V*s/m over +/-8V, thus:

S(T40) = 1500 V/m/s flat response: 0.025 Hz (40 sec) to 50 Hz

For the Trillium-240 seismometer sensitivity: the manufacturer quotes 1200 V*s/m over +/-8V, thus:

S(T240) = 1200 V/m/s flat response: 0.004167 Hz (240 sec) to 35 Hz

For the DPG sensitivity:

Calibration of the DPG's (Jim Sari at JHU/APL with a 1 psi sensor) gives -186 dB re 1V/microPa, (a 1psi Bell Jar gave ~1 mV/Pa with a variability of a factor of 2), using the same calculation as the hydrophone we get:

S(DPG) = 0.501 mV/Pa

flat response: 0.010 Hz to 10 Hz

SYSTEM RESPONSE INFO:

The sensitivity of the A/D is as follows: Voltage range: +/- 2.5 V, max counts over this range of -8388608 to 8388607. This gives S(a/d) = 5.0 / 16777215 = 0.298 microV/count, or:

S(a/d) = 0.298 microV/count

So for "unity" response (i.e. NO pre-amp gain):

S(unity) = S(a/d)/S(sensor)

S(hyd-unity)	= 0.456 mPa/count	> 0.456 * 10**-3 Pa/count
S(L22-unity)	= 10.27 (nm/s)/count	> 1.027 * 10**-8 (m/s)/count
S(L28-unity)	= 11.42 (nm/s)/count	> 1.142 * 10**-8 (m/s)/count
S(T40-unity)	= 0.199 (nm/s)/count	> 1.99 * 10**-10 (m/s)/count
S(T240-unity)	= 0.248 (nm/s)/count	> 2.483 * 10**-10 (m/s)/count
S(DPG-unity)	= 0.595 mPa/count	> 0.595 * 10**-3 Pa/count

The "standard" gain settings for each sensor/channel on all LC2000 OBS deployments are:

gain(hyd)	= 8	gain(DPG)	= 1
gain(I22)	= 64	gain(T40)	= 0.5
gain(l28)	= 64	gain(T240)	= 0.25

These gain settings are only changed for special circumstances or for special requests. When the pre-amp gain is applied to the sensor output the 'effective' gain becomes:

S(sensor-eff) = S(sensor) * gain(preamp)

Total system response then becomes:

S(total)= S(a/d)/S(sensor-eff) = S(unity)/gain(preamp)

Finally, the generalized response and calibration factor for the LC2000 system with various sensors then becomes:

LC2000 Generalized System Response:

~ ~

• •

<u>SP units:</u>		
Hydro pressure response	= 57 μPa/count	(~0.05 Hz to 7.5 kHz)
L22 Velocity response	= 0.160 (nm/s)/count	(~2 Hz and above)
L28 Velocity response	= 0.178 (nm/s)/count	(~4.5 Hz and above)
LP units:		
Trillium-40 Velocity response	= 0.398 (nm/s)/count	(40 sec to 50 Hz)
Trillium-240 Velocity response	= 0.496 (nm/s)/count	(240 sec to 35 Hz)
DPG pressure response	= 0.595 mPa/count	(100 sec to 10 Hz)