Pinnacle UPD File Format

10 July 2006

Pinnacle Technologies, Inc.
600 Townsend Street
Suite 160W
San Francisco, CA 94103

Copyright 2006 Pinnacle Technologies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system without prior written permission.

Table Of Contents

INTRODUCTION

The UPD (Universal Pinnacle Data) file format is a binary, tag driven format designed to meet the goals of current and future data storage for Pinnacle Technologies. Data in UPD files is stored in blocks which are generally 1 K in size, but block size is not restricted by the format. The files are written in IEEE little-endian format. Each block begins with a Block Header section followed by one or more Value Pairs.

Block Header

Name	Bytes	Description
BlockSize	4	Size of this block in bytes (including these four)
ValuePairs	2	Number of Value Pairs in this block

Value Pair

Name	Bytes	Description
ByteSize	4	Total size in bytes of the data in this Value Pair (not including these 4 or the 2 bytes for the Data Type)
DataType	2	Code for the data type of this Value Pair. See UPD VALUE PAIR TAGS for a listing of codes.
Data	Determined by DataType	Value Pair data. Number of data points in the value pair must equal ByteSize divided by the bytes/data point for this DataType.

In a typical file, each block begins with a time value described by Value Pair Tags 1-8. Time is always stored as UTC. The first block usually contains tags 9 and 10 to describe the Timezone and Timezone Type (DST rules) for the file. The Timezone, which is an offset from UTC to local standard time, can be found from table. The Timezone Type is an index into the table "DST Types" which describes the start and end of DST. Both the start and end time are given in the local standard time.; The time zone name is determined by matching the offset in hours $(\operatorname{tag} 9)$ and the Timezone Type $(\operatorname{tag} 10)$ in the table.

UPD VALUE PAIR TAGS

The UPD Value Pair tags are listed below. The table below lists the commands with their command number or command code (in both decimal and hexadecimal), size in bytes, command name and a brief description. If the size in bytes is N/A, the byte size of the Value Pair is used to read the correct number of bytes from the file.

UPD VALUE PAIR TAGS

Code (decimal)	Code (HEX)	Bytes	Name	Description \& Multiplier
1	01H	1	Year	Add 2000 to get year
2	02H	1	Month	
3	03H	1	Day Of Week	
4	04H	1	Day	
5	05H	1	Hour	
6	06H	1	Minute	
7	07H	1	Second	
8	08H	1	Millisec	Multiply value by 10 to get milliseconds
9	09H	1	Timezone	Offset from UTC (hrs) = (timezone - 48)/4
10	0AH	1	Timezone Type	See "DST Types"
11	0BH	1	Data Flash ID	Type of Flash Memory (HEX)
12	0CH	1	Status Bits	Tool Diagnostics
13	0DH	1	Poll Rate	Polling Rate in Seconds
14	0EH	2	Serial Number	Serial number of this tool
15	0FH	1	Software Version	Software version of the code in the tool
16	10H	1	2.5 V supply reading (ver 1)	Multiply by 0.01296875 to get 2.5 V supply output
17	11H	1	3.3V supply reading (ver 1)	Multiply by 0.0171211 to get 3.3 V supply output
18	12H	1	5 V supply reading (ver 1)	Multiply by 0.0259375 to get 5V supply output
19	13H	1	5V High Current reading (ver 1)	Multiply by 0.0259375 to get Motor power supply output
20	14H	1	12 V supply reading (ver 1)	Multiply by 0.0622578 to get 12 V supply output
21	15H	1	Raw Voltage reading (ver 1)	Raw voltage coming into the tool
22	16H	1	Temperature	$\begin{aligned} & \text { Valid from }-65 \mathrm{C} \text { to } 190 \mathrm{C} \text {. Values }>190 \text {, subtract } \\ & 256 \end{aligned}$
23	17H	2	Cross Channel Calibration	Defined as uR/V on gain 1
24	18H	2	Long Channel Calibration	Defined as uR/V on gain 1
25	19H	N/A	Location	ASCII String of Tool Name
26	1AH	2	X Accelerometer Reading (ver 1)	Multiply by 0.00244379 to get accelerometer output in volts

27	1BH	2	Y Accelerometer Reading (ver 1)	Multiply by 0.00244379 to get accelerometer output in volts
28	1CH	2	Z Accelerometer Reading (ver 1)	Multiply by 0.00244379 to get accelerometer output in volts
29	1DH	1	Cross Channel Rezero	Indicates a rezero occurred at the end of this block
30	1EH	1	Long Channel Rezero	Indicates a rezero occurred at the end of this block
31	1FH	4	Sequence Number	CURRENTLY NOT USED
32	20H	2	Pressure	CURRENTLY NOT USED
33	21H	1	Gain	Divide calibration by the gain to get uR/V
34	22H	2	Compass	In degrees
35	23H	2	Tool Memory Block Number	CURRENTLY NOT USED
36	24H	1	Data Type	$1=16$ bit Tilt, $2=$ Press/Temp, $3=$ Accel, $4=$ Tilt + Accel, $5=24$ bit tilt
37	25H	1	Bad Data	Data point indices where checksum failed (zero based)
38	26H	1	Skip Data	Data point indices where polling was skipped (zero based)
39	27H	2	X Accelerometer Calibration	Conversion from V to uR for X accelerometer
40	28H	2	Y Accelerometer Calibration	Conversion from V to uR for Y accelerometer
41	29H	2	Z Accelerometer Calibration	Conversion from V to uR for Z accelerometer
42	2AH	1	2.5 V Supply reading (ver 2)	Version 2-2.5 v (mult by 0.0098039)
43	2BH	1	3.3V Supply reading (ver 2)	Version 2-3.3 v (mult by 0.019608)
44	2CH	1	5 V Supply reading (ver 2)	Version 2-5.0 v (mult by 0.029412)
45	2DH	1	5V High Current reading (ver 2)	Version 2-5.H v (mult by 0.029412)
46	2EH	1	12V Supply reading (ver 2)	Version 2-12 v (mult by 0.06886)
47	2FH	1	Raw Voltage (ver 2)	Version 2 - Raw v (mult by 0.019477)
48	30H	1	Temperature (ver 2)	Version 2 - Temperature (mult by 0.98039216 for C)
49	31H	2	X Accelerometer Reading (ver 2)	Version 2 - X Accel
50	32 H	2	Y Accelerometer Reading (ver 2)	Version 2 - Y Accel
51	33H	2	Z Accelerometer Reading (ver 2)	Version 2 - Z Accel
52	34H	N/A	Tool Code Version	Tool code version (ASCII String)
53	35H	N/A	TiltTalk2 Version	TiltTalk2 version (ASCII String)
54	36H	N/A	Computer Name	Name of computer collecting the data (ASCII String)
256	100H	2	2 Byte Tilt Data	2 bytes for each of cross and long for each point. Multiply by $3.814755474 \mathrm{e}-5$ to get volts.

	101 H	2	Fluid Pressure/Temperature Data	
257	102 H	2	High Rate Accelerometer Data	2 bytes for each of x, y and z for each point. Multiply by .00244379 to get volts.
259	103 H	2	Accelerometer and Tilt Data	2 bytes each of cross, long bubble, then x,y,z accel for each point.
260	104 H	3	3 Byte Tilt Data	3 bytes for each of cross and long for each point. Multiply by $1.49011612 \mathrm{e}-7$ to get volts.

TIME ZONES

Name	Offset	DST Rule
Marshall Islands	-12	0
Samoa	-11	0
Hawaii	-10	0
Alaska	-9	1
US(Pacific)	-8	1
Arizona	-7	0
US(Mountain)	-7	1
Saskatchewan/Central America	-6	0
US(Central)	-6	1
Indiana/Columbia/Peru	-5	0
US(East)	-5	1
Atlantic	-4	1
Newfoundland	-3.5	1
Argentina	-3	1
Greenland	-3	1
Brazil	-3	2
Mid-Atlantic	-2	3
Azores	-1	4
UTC	0	0
UK/Ireland	0	4
West Central Africa	1	0
West \& Central Europe	1	4
South Africa/Isreal	2	0
Romania	2	3
Eastern Europe	2	4
Egypt	2	5
Kuwait \& Saudi Arabia	3	0
Western Russia (Moscow)	3	4
Iraq	3	6
Iran	3.5	7
UAE/Oman/Khazakhstan(West)	4	0
Armenia/Georgia/Azerbaijan	4	4
Afghanistan	4.5	0
Pakistan/Uzbekistan/Khazakhstan(Central)	5	0
Urals	5	4
India	5.5	0
Nepal	5.75	0
Khazakhstan(East)/Bangladesh/Sri Lanka	6	0
Burma	6.5	0
Thailand/Vietnam/Indonesia	7	0
Russia/Central	7	4
China/Taiwan/Malaysia/Australia(West)	8	0
Eastern Siberia/Mongolia	8	4
Japan	9	0
Russia/East	9	4
Australia(Northern Territory)	9.5	0
South Australia	9.5	8
Australia(Queensland)	10	0
Australia(East)	10	8
Solomon Islands	11	0
Fiji/Marshall Islands	12	0
New Zealand	12	9
Tonga	13	0

DST RULES

Rule Number	Start Month	Start Day	Nth Day*	Hour	End Month	End Day	Nth Day	Hour
0	0	0	0	0	0	0	0	0
1	April	Sunday	1	2	October	Sunday	5	1
2	October	Sunday	3	0	February	Sunday	3	0
3	March	Sunday	5	0	September	Sunday	5	0
4	March	Sunday	5	2	October	Sunday	5	1
5	April	Sunday	5	0	September	Sunday	5	0
6	April	Sunday	1	3	October	Sunday	1	2
7	March	Tuesday	3	3	September	Thursday	3	2
8	October	Sunday	5	2	March	Sunday	1	2
9	October	Sunday	1	2	March	Sunday	3	1

- Nth day indicates which Start Day in the Start Month or End Day of the End Month has the transition. For instance, for Rule 2 (Brasil), DST starts on the $3^{\text {rd }}$ Sunday in October. Five indicates the last Start Day (eg. Last Sunday) of that month.

Example

Offset	Val [hex] *)	Description [dezimal]
0000	000004 DA	Blocksize $=1242$ bytes
0004	0020	32 Value Pairs
0006	00000004	ValuePair \#1 Size $=4$
000 A	001 F	Data Type 31 (Sequence Number)
000 C	00002529	Data
0010	00000002	Value Pair \#2 Size $=2$
0014	000 E	Data Type 14 (Serial Number)
0016	5 D C5	Data (Value $=$ 24005)
0018	00000001	Value Pair \#3 Size $=1$
001 C	0001	Data Type 1 (Year)
001 E	06	Year 2006
001 F	00000001	Value Pair \#4 Size $=1$
0023	0002	Data Type 2 (Month)
0025	05	Month 5 (May)
0026	00000001	Value Pair \#5 Size $=1$
002 A	0003	Data Type 3 (Day of Week)
002 C	04	Thursday
002 D	00000001	Value Pair \#6, Size=1
0031	0004	Data Type 4 (Day)
0033	000 B	11
0034	00000001	Value Pair \#7, Size=1
0038	0005	Data Type 5 (Hour)
003 A	07	7
003 B	00000001	Value Pair \#8, Size=1
003 F	0006	Data Type 6 (Minute)
0041	28	40
0042	00000001	Value Pair \#9, Size=1

0046	0007	Data Type 7 (Seconds)
0048	0F	15
0049	00000001	Value Pair \#10, Size=1
004D	0008	Data Type 8 (Millisecs)
004F	28	40 (400 msec)
0050	00000001	Value Pair \#11, Size=1
0054	0009	Data Type 9 (Timezone)
0056	10	16 (offset=-8h)
0057	00000001	Value Pair \#12, Size=1
005B	000 A	Data Type 10 (Timezone Type)
005D	01	Timezone Type=1
005E	00000001	Value Pair\#13, Size=1
0062	00 0F	Data Type 15 (Software Version)
0064	04	Major Version = 4
0065	00000007	Value Pair \#14, Size=7
0069	0034	Data Type 52 (Tool Code Version)
006B		"004.133"
0072	000000 0A	Value Pair \#15, Size=10
0076	0035	Data Type 53 (TiltTalk Version)
0078		"2, 6, 1, 0"
0082	00000006	Value Pair \#16, Size=6
0086	0036	Data Type 54 (Computer Name)
0088		"MAINTM"
008E	00000001	Value Pair \#17, Size=1
0092	00 1D	Data Type 29 (Cross Channel Rezero)
0094	00	0: No cross rezero
0095	00000001	Value Pair \#18, Size=1
0099	001 E	Data Type 30 (Long Channel Rezero)
009B	00	0 : No long rezero
009C	00000002	Value Pair\#19, Size=2
00A0	0031	Data Type 49 (X Accel)
00A2	74 F7	X-Accel: 0x74F7
00A4	00000002	Value Pair\#20, Size=2
00A8	0032	Data Type 50 (Y Accel)
00AA	0803	Y-Accel: 0x0803
00AC	00000002	Value Pair\#21, Size=2
00B0	0033	Data Type 51 (Z Accel)
00B2	E7 2F	Y-Accel: 0xE72F
00B4	00000001	Value Pair\#22, Size=1
00B8	0024	Data Type 36 (Data Type)
00BA	05	5: 24bit Tilt
00BB	00000001	Value Pair \#23, Size=1
00BF	002 E	Data Type 46 (12V Supply)
00C1	AF	$0 \mathrm{xAF}=12.05 \mathrm{~V}$
00C2	00000001	Value Pair \#24, Size=1
00C6	002 F	Data Type 47 (Raw Voltage)
00C8	81	0x81 = 25.1V
00C9	00000001	Value Pair \#25, Size=1
00CD	0030	Data Type 48 (Temperature)
00CF	76	$0 \times 76=115.7 \mathrm{C}$
00D0	00000002	Value Pair \#26, Size=2
00D4	0017	Data Type 23 (Cross Calib)
00D6	02 F 6	
00D8	00000002	Value Pair \#27, Size=2
00DC	0018	Data Type 24 (Long Calib)
00DE	03 C 0	
00E0	00000019	Value Pair \#28, Size=25
00E4	0019	Data Type 25 (Location)

00 E 6		"MAINTM" filled with 0x00
00 FF	00000001	Value Pair \#29, Size $=1$
0103	000 D	Data Type 13 (Poll Rate)
0105	03	3 sec
0106	00000001	Value Pair \#30, Size $=1$
010 A	0021	Data Type 33 (Gain)
010 C	01	Gain = 1
010 D	00000001	Value Pair\#31, Size $=1$
0111	0025	Data Type 37 (Bad Data)
0113	28	Bad Data at offset 40
0114	000003 C 0	Value Pair \#32, Size $=960$
0018	0104	Data Type 260 (32 bit tilt)
001 A	4 A EB AB	First Cross Sample
001 D	721242	First Long Sample
0020	4 A EC 5E	Second Cross Sample
0023	7211 BF	Second Long Sample
\ldots	\ldots	\ldots

*) Hex values in reversed order (least significant byte to the right) to increase readability

