CASCADIA Low-Pass Filter Design

MARITIME SYSTEMS OPERATION, Leidos
Mark Lockwood

May 28, 2014

Contents

1 Summary 1

2 Filter Description 1
2.1 Impulse Response. e 2
2.2 Frequency Response e 3
2.3 Dynamic Generation L L L 7

3 Filtering Software 8
3.1 Mini-SEED Library e 8
3.2 Convolution Implementation 8
3.3 Compiled Executable 0 0 o L 9
3.4 Script . .. e e e 9

4 Example Filtered File 10

1 Summary

The low-pass filtering software handles the sensor types from multiple research institutions,
all using diverse sample rates from 40 Hz to 125 Hz. This document describes the properties
of the filters common to all sample rates, their generation algorithm, and the tool that can
filter software rapidly at sea post-recovery.

2 Filter Description

The following filter attributes are ensured to exist for all sample rates:

2.1 Impulse Response 2 FILTER DESCRIPTION

Generalized Linear Phase (GLP) Finite Impulse Response (FIR) Digital Filter

3 Hz pass-band cutoff

0.25 Hz transition band width

140 dB stopband attenuation

Double-precision taps

The filter length, in taps, is linearly related to stopband level, and also inversely pro-
portional to transition width. Stopband levels are designed to suppress spectral content
above 3.25 Hz.

To avoid numerical artifacts, the filter is generated and stored as a double-precision
(64-bit IEEE floating point) array, and convolved at double-precision before casting time-
domain samples to their original two’s-complement integral representation; spectral content
in the stop band after the integer cast is generally distributed as quantization noise.

The filter design (this section, Sections 2.2 and 2.3) and the filtering software (see
Section 3) is sensitive to four critical details, which are mutually balanced:

e Robustly and rapidly generating filters for multiple sample rates
e Minimizing passband ripple effects to maintain proper magnitude in filtered data
e Eliminating phase distortion by compensating for lag on GLP filter, yielding no shift
e Filtering the multichannel data several orders of magnitude faster than real-time,
hence using an FFT-based solution
2.1 Impulse Response

Figure 2.1 plots a 32-second 3 Hz low-pass impulse response for a 50 Hz sample rate as an
example.

2.2 Frequency Response 2 FILTER DESCRIPTION

0.14 T T T T T T T

0.12 n

0.1 4

0.08 n

0.06 7

Amplitude

0.04 4

0.02 4

| e e~

-0.02 n

_004 Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600

Filter coefficient, n

Figure 2.1: Causual Filter Impulse Response For f; = 50 Hz

2.2 Frequency Response

Figure 2.2 first demonstrates the unwrapped phase response of the filter. Since the phase
is linear, the group delay can be fully compensated by a pre-padding of samples at the
start of the filtering process.

Three plots demonstrate structure in the magnitude of the frequency response. Fig-
ure 2.3 shows the filter’s small transition width and low stopband level up to the Nyquist
frequency. Figure 2.4 highlights the transition band, and Figure 2.5 zooms into the pass-
band.

The resulting ‘ripple’ is still small for all sample rates: approximately 0.005 dB.

2.2 Frequency Response 2 FILTER DESCRIPTION

500
-1000 -
~1500 -

—2000

Unwrapped Phase Response (deg)

CDB0 e

-3000!b—b—-——¢—--— i -— I
0 5 10 15 20 25

Frequency (Hz)

Figure 2.2: Unwrapped Phase Response for fs = 50 Hz, feuonr = 3 Hz Filter

2.2 Frequency Response 2 FILTER DESCRIPTION

-100

-120

Filter Magnitude Response (dB)

-140

-160

0 5 10 15 20 25
Frequency (Hz)

Figure 2.3: Magnitude Response for fs = 50 Hz, feutonr = 3 Hz Filter

2.2 Frequency Response 2 FILTER DESCRIPTION

I
A
o

|
2]
o

~100 -

-120

Filter Magnitude Response (dB)
|
(o]
o

2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3
Frequency (Hz)

Figure 2.4: Zoomed Transition Band of Figure 2.3

2.3 Dynamic Generation 2 FILTER DESCRIPTION

0'01::::!::::!::::!::::!::::!

0.004 HF- {1 AEAF A E e e e

0.002 F

—0.002 1 LB S L L

~0.004 f1- -t b A Bl AL T T T LY Y1 O [I | 1

Filter Magnitude Response (dB)

-0.01 S [S S (N E
0 0.5 1 15 2 2.5 3
Frequency (Hz)

Figure 2.5: Zoomed Passband of Figure 2.3

2.3 Dynamic Generation

Filters are generated using the Parks-McClellan algorithm, a function applicable to MAT-
LAB and Octave. After a filter is generated, it is saved to a binary file with metadata and
the filter taps. For convenience, the filename contains the sample rate, which the compiled
tool (Section 3.3) loads at run-time, and validates against Mini-SEED header data for every
record.

Leidos field filtering laptops include a script for filter generation that runs in Octave.
Should a representative encounter an undocumented sample rate, he/she can generate a
new filter usable by the filtering tool to ensure that data are securely filtered in the field.

3 FILTERING SOFTWARE

3 Filtering Software

The filtering software is designed to handle arbitrarily large single channel Mini-SEED files.
Filtering operates on a snapshot basis, reading in records of data and storing samples in
a double-ended queue. When samples have been filtered in a snapshot, they are cast back
to their original type into a separate queue. When samples are written on a record-basis,
they are discarded from the queue, minimizing memory consumption.

While the delivered software was compiled to natively support 32-bit integer samples
stored in Mini-SEED records, the C++ class is templated to support any numerical type
supported by C and C++, and has been successfully tested on Mini-SEED files containing
floating-point data without compression, in addition to the standard STEIM-compressed
and uncompressed integer samples.

3.1 Mini-SEED Library

To avoid distorting any record metadata, the filtering software is implemented with TRIS’
libmseed. The C LGPL-licensed library was validated to contain no memory leaks for the
symbols used, and wrapped within the C++ tool described in Section 3.3.

Mini-SEED Records written to a separate file maintain all original metadata and the
same compression algorithm contained in the unfiltered file. Filtered samples are time-
aligned with the same sample rate, allowing tools to operate equivalently on filtered sensor
data as they would on unfiltered data. The stopband attenuation is also low enough to
minimize aliasing artifacts should an end-user desire to downsample the dataset.

For simplicity across all organizations, support is limited to single-channel files. Multi-
plexed files must be split to files with a descriptive channel-type embedded in the filename.

3.2 Convolution Implementation

The convolution is implemented with an overlap-save frequency-domain convolution. Fast
Fourier Transform lengths are preferred to be factorable to very small powers of primes
(e.g., 2 and 3), and can be zero-padded separately from the snapshot length.

On startup, the filter is imported and validated. For future circular convolutions, a
single symmetric real-to-complex FF'T is executed for the filter:

_ FFT(h[n])

-—F

where dividing by L accounts for the inverse FFT factor for every sample, accomplished
simultaneously with the circular convolution. The unaliased samples from the circular
convolution

HIk]

&[n] = FFT™ (FFT(z[n]) - H[k])

3.3 Compiled Executable 3 FILTERING SOFTWARE

are appended to the output double-ended queue. The - operator is the complex Hadamard
product, FFT, FFT! are real-to-complex and complex-to-real (respectively) transforms,
and Z[n] is the circularly-convolved time-domain sample sequence to be pruned for valid
samples in overlap-save.

The implementation yields a vast O(N log N) improvement over normal time-domain
O(N?) convolutions. While a time-domain solution is tolerable for short sample rates, e.g.
40 Hz, it would run slower than real-time at 125 Hz because of the approximately 32 second
filter. Benchmarks demonstrate a modern processor can filter a year’s worth of data as
fast as SATA read performance, taking mere minutes regardless of sample rate.

Whenever a gap is encountered between records, the data restarts the filtration process
to prevent any gaps from distorting the filtered output. The resulting filtered data preserves
the gaps as originally recorded.

3.3 Compiled Executable

The compiled executable is written in C++ with C libmseed dependencies as described in
Section 3.1. It requires a filter filename, an output path, and a sorted sequential list of
files to be filtered. The buffer length for the Fourier Transform can be overridden, but in
general is tuned for maximum filtering performance.

The list of files are managed as a stack, allowing the long filter to not affect transitions
between files. The only filter transient visible in output data should be present at the end
of a long dataset, not a file boundaries.

At startup, the input sample queue is populated with a mirror of the first L /2 samples.
This prevents a zero-padded filter transient at file startup, while still allowing the tool to
maintain time-alignment.

3.4 Script

A UNIX bash script allows a representative to use the same batch script for any recovery
operation. An organization is defined, which then has an associative array, mapping channel
types to their sample rates. The following code snippet demonstrates this notion, where
ORG could be any string-description of the organization:

define_ORG ()

{

channel type 3
fs["CH3"]=50

channel type 2
fs["CH2"]=40

channel type 1
fs["CH1"]=40

channel type O

4 EXAMPLE FILTERED FILE

fs["CHO"]=100

This example is synthetic, but it demonstrates that the operator enumerates sample
rate expectations as documented in the Shipboard Procedures. The lower-level filtering
tool will throw an exception should a channel type file contain records with an inconsistent
sample rate. This ensures sequences are definitely filtered with the expected low-pass
cutoff.

The script iterates over all defined channel types in the associative sample rate map,
and recursively searches subdirectories for filenames with matching channel strings. It sorts
filenames for a given channel sequentially by time, and passes these to the tool as described
in Section 3.3. If no channels are discovered, a warning message says that no channels are
found for operator awareness.

4 Example Filtered File

Three time-domain examples of data filtration are presented here to demonstrate filtration
continuity, relative sample level preservation, and time alignment. All examples were from
a STEIM-I compressed Mini-SEED 125 Hz test file.

Figures 4.1 and 4.2 show two different 8 second (1000 sample) time periods of filtered
and unfiltered data. Figure 4.3 zooms on a 1 second region of Figure 4.2 to exhibit a
short-time loss of high-frequency data against the original sequence. Figure 4.4 shows the
beginning of the sequence, and how the impact of the filter transient is minimized at the
start of a filtration process.

10

4 EXAMPLE FILTERED FILE

Sample Level

11

x 10
2.145 T T T T T T T
Al
b 4 b S
‘ A iy ! r L
2.1446 I mf]
‘ J 1‘ y)‘ \
21444} it \ | :
l’, 1 Unfiltered Data
” Filtered Data
2.1442 1 I !)‘,'l i
Y
2.144 A
2 143872 7I3 7I4 7I5 7I6 7I7 7I8 7I9

Time Offset (sec)

Figure 4.1: Filtered Data Comparison A For f, = 125 Hz

80

4 EXAMPLE FILTERED FILE

2. 1033 T T T T T T T
Unfiltered Data

Filtered Data i

2.1032

2.1031

2.1031

21031} | ff ’|")]l‘l‘ ‘(‘ W 1

Sample Level

I "' ‘.T‘ ‘
2.103 | }"11 TL‘ “ ,(

2.1029

2.1029 : : : ' :
1400 1401 1402 1403 1404 1405 1406 1407 1408

Time Offset (sec)

Figure 4.2: Filtered Data Comparison B For f; = 125 Hz

12

4 EXAMPLE FILTERED FILE

Sample Level

13

2.1031 T T T T T T T T T

2.1031

2.1031

2.103

2.103

2.103

2.103

Unfiltered Data
Filtered Data

2.103

2.1029

029
1403 1403.1 1403.2 1403.3 1403.4 1403.5 1403.6 1403.7 1403.8 1403.9 1404
Time Offset (sec)

Figure 4.3: Filtered Data Comparison, Zoomed Figure 4.2

4 EXAMPLE FILTERED FILE

14

Sample Level

x 10

2.04 T

2.035

2.03

2.025

2.02

2.015
0

Figure 4.4:

Time Offset (sec)

Filtered Data Comparison (Startup) For fs; = 125 Hz

	Summary
	Filter Description
	Impulse Response
	Frequency Response
	Dynamic Generation

	Filtering Software
	Mini-SEED Library
	Convolution Implementation
	Compiled Executable
	Script

	Example Filtered File

