Summary
CUSRA2021 is a radially anisotropic shear wave velocity model for the upper mantle structure of contiguous US, from adjoint full waveform inversion.
Quicklinks
Description
Name | CUSRA2021 |
Title | A radially anisotropic shear wave velocity model for the upper mantle of Contiguous US |
Type | 3-D Tomography Earth Model |
Sub Type | Absolute Vsv and Vsh (km/s) |
Year | 2022 |
Data Revision | r0.0 (revision history) |
Short Description | CUSRA2021 model is developed by adjoint full waveform inversion using intermediate period body and surface waves. The inversion minimizes a geographically weighted frequency-dependent travel-time misfit function with a multiscale strategy. The waveform forward and adjoint modelling is performed by spectral element method using a software package SPECFEM3D_GLOBE (Komatitsch & Tromp, 2002a, b). |
Authors: | Tong Zhou, Michigan State University, now at Aramco Research Center – Beijing Jiaqi Li, Michigan State University, now at University of California, Los Angeles Ziyi Xi, Michigan State University Guoliang Li, Michigan State University, now at University of Southern California Min Chen, Michigan State University |
Reference Model | N/A |
Previous Model | N/A |
Model Download | CUSRA2021.r0.0.nc (see metadata) is the netCDF 3 Classic file for the model that contains Vsv, vertical polarized shear wave velocity (km/s), and Vsh, horizontal polarized shear wave velocity (km/s). |
Depth Coverage | 60 to 410 km |
Area | The contiguous US and surrounding regions (25 °/54.5 °, -125 °/-65.5 °) |
Data Set Description | 15-50 s body waves and 30-120 s surface waves are recorded by 5,280 broadband stations in the United States, Canada, and Mexico, from 160 earthquake events selected from the global centroid moment tensor catalog (Ekström et al., 2012) and the SLU regional moment tensor catalog (Herrmann et al., 2011). |
Citations and DOIs
To cite the original work behind this Earth model:
- Zhou, T., Li, J., Xi, Z., Li, G., & Chen, M. (2022). CUSRA2021: A radially anisotropic model of the contiguous US and surrounding regions by full-waveform inversion. Journal of Geophysical Research: Solid Earth, 127, e2021JB023893. https://doi.org/10.1029/2021JB023893
To cite IRIS DMC Data Products effort:
- Trabant, C., A. R. Hutko, M. Bahavar, R. Karstens, T. Ahern, and R. Aster (2012), Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications, Seismological Research Letters, 83(5), 846–854, https://doi.org/10.1785/0220120032.
DOI for this EMC webpage: https://doi.org/10.17611/dp/emc.2022.cusra2021.1
References
- Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/
https://doi.org/10.1016/j.pepi.2012.04.002
- Herrmann, R. B., Benz, H., & Ammon, C. J. (2011). Monitoring the earthquake source process in North America. Bulletin of the Seismological Society of America, 101(6), 2609–2625. https://doi.org/
https://doi.org/10.1785/0120110095
- Komatitsch, D., & Tromp, J. (2002a). Spectral-element simulations of global seismic wave propagation—I. Validation. Geophysical Journal International, 149(2), 390–412. https://doi.org/
https://doi.org/10.1046/j.1365-246x.2002.01653.x
- Komatitsch, D., & Tromp, J. (2002b). Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318. https://doi.org/
https://doi.org/10.1046/j.1365-246x.2002.01716.x
Credits
- r0.0 model provided by Tong Zhou.
Revision History
revision r0.0: uploaded August 22, 2022.
Timeline
- 2022-08-31
- online