Data Services Products: EMC-News EMC News and Updates

Summary

News headlines on IRIS EMC development and changes.

Description

The IRIS EMC news headlines are listed in reverse chronological order.

2024-08-29
CAM2022, Keith Priestley, Tak Ho, Yasuko Takei, Dan McKenzie (2024), Revision 0.1. The lithospheric thickness file of model CAM2022 has been updated. The wave speed and temperature files are unchanged.

2024-08-29
EARA2024, Xi et al., 2024, is a new radially anisotropic seismic velocity model for the crust and upper mantle beneath east asia and northwestern pacific subduction zones.

2024-08-09
GLAD-M35, Congyue Cui et al. (2024), A joint P and S global tomographic model with uncertainty quantification.

2024-08-07
Aus22, De Laat et al., 2023, an azimuthally anisotropic S-wave tomography model of the crust, upper mantle and transition zone of the Australian Plate and its boundaries, computed using waveform tomography. It is computed from a database of 0.9 million vertical-component waveform fits.

2024-07-22
ADAMA, Olugboji, Tolulope, et al., 2024, Africa’s crustal architecture inferred from probabilistic and perturbational inversion of ambient noise.

2024-06-04
FWEA23, Liu et al., 2024, is a high resolution seismic P- and S-wave model of the crust and mantle beneath East Asia. It\‘s produced by full-waveform adjoint inversion using a large dataset. The model has radial anisotropy in the top 220 km.

2024-05-15
REVEAL, Thrastarson et al. (2024), is a global transversely isotropic Earth model created by inverting a dataset of 2366 earthquakes using full-waveform inversion.

2024-04-11
CAM2022, Keith Priestley, Tak Ho, Yasuko Takei, Dan McKenzie (2024), A vertical shear wave speed (Vsv ) tomographic model of the upper mantle derived from the analysis of a large (∼1.2×107 seismograms), multi-mode surface-wave data set has been used to construct a relationship between Vsv and temperature (T) for the shallower upper mantle (<300 km depth).

2024-03-04
MESWA. Revision 0.1, The revised model (r0.1) corrects an error with the latitude values. The original version (r0.0) provided values on a geocentric coordinate system, while this revision provides the model with regular geographic latitudes. The difference shifts the model northward by at most about 0.2 degree.

2024-01-31
MESWA, MESWA is a model of radially anisotropic crustal and upper mantle seismic structure of the Middle East and Southwest Asia (MESWA) from adjoint waveform tomography.

2024-01-23
CANVAS, Doody et al. (2023). A radially anisotropic adjoint waveform tomography model of California and Nevada.

2023-11-07
MCR-MT-2016, Bedrosian (2016). Three-dimensional electrical conductivity model of the Midcontinent Rift based on magnetotelluric data.

2023-11-01
FWT_MiddleAmerica_2023, Liu, M., & Gao, H. (2023). 3-D shear-wave velocity model of the Middle American subduction margin.

2023-10-25
Alaska_NWCanada_Moho_2023, Liu, M., & Gao, H. (2023). Depth of Moho beneath Alaska and Northwestern Canada.

2023-10-20
IPcrust2022, Irandoust, Priestley, and Sobouti 2022, is an Iranian Plateau crustal shear wave model.

2023-09-13
LOWE, Thrastarson et al. 2022, is a global transversely isotropic Earth model created by inverting a dataset of 1179 earthquakes using full-waveform inversion.

2023-08-11
EUS-DGR-2022, Chai et al. (2022), is a 3D shear-wave velocity model of the Eastern United States.

2023-08-10
OK-DGT-2021, Chai et al. (2021), is a 3D seismic velocity model for Oklahoma.

2023-08-01
AFRP22, Boyce et al. (2023), is an adaptively parameterized, absolute P-wave tomographic model for Africa provided with and without crustal correction.

2023-07-17
SEMUCB-WM1, French & Romanowicz (2014), r0.1 revision is online. The SEMUCB_WM1 expresses the perturbations to mantle VS and ξ in cubic b-splines radially and in spherical splines laterally. However, the previous SEMUCB_WM1 (r0.0) was only evaluated to limited spherical spline and b-spline nodes. This version updates the model to include an appropriate number of nodes to represent the global 3D model laterally and radially.

2023-06-06
AFR2022, van Herwaarden et al., JGR (2023), Full-waveform tomography of the African Plate using dynamic mini-batches.

2023-05-23
HawaiiANR22, Wei et al. (2023), 3D shear wave velocity model of the Island of Hawai’i from multimode Rayleigh wave ambient noise tomography.

2023-03-08
mantle_T_shinevar, Shinevar, W., et al. (2023), mantle_T_shinevar estimates mantle temperature, density, magnesium number, and relevant uncertainties for the shallow mantle (60-100 km) beneath the continental United States.

2023-03-06
CAP22, Boyce, A., et al. (2023), is an absolute P-wave speed tomographic model with focus on North America, specifically Canadian and Alaskan mantle structure, provided with and without crustal correction.

2023-02-14
CONUS-MT-2023, Murphy et al. (2023), is a model of high resolution electrical conductivity variations in the Earth’s crust and mantle of contiguous United States based on magnetotellurics and ground magnetic observatory data.

2023-01-24
SEMUCB-WM1 by French and Romanowicz (2014), is a global whole-mantle tomographic earth model derived from fully numerical SEM-based forward modelling.

2022-12-12
MECMUS-2022 by Munch and Grayver (2023), is a multi-scale Electrical Conductivity Model of the United States

2022-11-17
ORLA2022 by Weidle et al. (2019), is a 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia.

2022-10-21
AF2019 by Celli, Lebedev, Schaeffer and Gaina (2019), is a 3-D shear-wave model for Africa from waveform inversion with a massive dataset.

2022-10-06
MITPS_20 by Golos, Fang and van der Hilst (2020), A velocity model for Vp, Vs, and Vp/Vs Ratio variations in the North American lithosphere from body wave travel times and surface wave dispersion.

2022-10-03
FWT_SouthAmerica_2022 by Liu and Gao (2022), A velocity model for Vp, Vs, and Vp/Vs Ratio variations in the North American lithosphere from body wave travel times and surface wave dispersion.

2022-08-31
CUSRA2021 by Zhou, Li, Xi, Li, and Chen (2022), A radially anisotropic shear wave velocity model for the upper mantle of Contiguous US.

2022-08-03
WUS256 by Rodgers, Krischer, Afanasiev, Boehm, Doody, Chiang, and Simmons (2022), is a 3-D adjoint waveform tomography model for the western United States.

2022-06-27
SLC-Vs10km-2022 by Zeng, Lin, and Allam (2022), is a shear velocity model for Salt Lake Valley, UT, USA.

2022-05-23
GLAD-M15 by * Bozdağ et al. (2016)*, is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor S362ANI. The 1-D reference model is STW105.

2022-05-23
GLAD-M25 by Lei et al. (2020), is an elastic model with radial anisotropy confined to the upper mantle, similar to its predecessor GLAD-M15. The 1-D reference model is STW105.

2022-05-23
SAAM23 by * Ciardelli et al. (2022)*, is a South American Adjoint Model—iteration 23.

2022-03-15
SASSY21 by Wehner et al. (2021), is a full-waveform tomographic model of Southeast Asia obtained using seismic data filtered at periods from 20 to 150 s. The inversion parameters were restricted to vsh, vsv, vp and rho.

2022-02-03
nz_atom_north_chow_etal_2021_vp+vs by Chow et al. (2022), is a 3D velocity model of the North Island of New Zealand derived using earthquake-based adjoint tomography.

2022-01-28
The CRUST1.0 model is updated to r0.1 to include revision tag and added comments to the metadata indicating that the values are for the cell centers.

2022-01-24
Mineral_3D_Vp_Vs, Islam, Powell, and Chapman (2021), is a three-dimensional compressional and shear wave models for the 2011 Mineral, Virginia aftershock region based on local earthquake tomography.

2022-01-21
SAVANI_US, Porritt et al. (2021), is a radially anisotropic whole mantle global model with high data and node density in the contiguous US.

2022-01-06
NME_3D_Vs, Yang et al. (2022), is a full waveform ambient noise tomography for the Northern Mississippi Embayment.

2021-10-18
NA13, Bedle, Lou, and Van der Lee (2021), is a 3-D tomography earth model that draws on 9331 waveforms from 252 regional earthquakes used for three-dimensional model NA07, an update of NA04.

2021-10-05
WUS-MT-2021, Murphy, Bedrosian , Kelbert (2021),is a three-dimensional electrical conductivity model of the western United States based on magnetotelluric data.

2021-09-23
CONUS-MT-2019, Kelbert et al. (2019), is a model of high resolution electrical conductivity variations in the Earth’s crust and mantle of contiguous United States based on magnetotellurics and ground magnetic observatory data.

2021-09-23
CONUS-MT-2021, Murphy et al. (2021), is a model of high resolution electrical conductivity variations in the Earth’s crust and mantle of contiguous United States based on magnetotellurics and ground magnetic observatory data.

2021-09-21
THO-MT-2021, Paul Bedrosian and Carol Finn (2021), is a three-dimensional electrical conductivity model of the southern Trans-Hudson Orogen and surrounding terranes based on magnetotelluric data.

2021-09-16
SPiRaL_1.4, Nathan Simmons, Steve Myers, Christina Morency, Andrea Chiang, Doug Knapp (2021), is joint model of P- and S-wave speeds and vertical transverse isotropy (VTI) variations from the surface to the core.

2021-08-23
Banda.Pwave.Harris.etal.2020, Harris et al., (2020), is a 3D P-wave velocity model of Eastern Indonesia / Banda Arc mantle from teleseismic tomography.

2021-08-13
Carib.Pwave.Harris.Miller.Porritt.2018, Harris, Miller and Porritt (2018) , incorporates broadband seismic data from 130 seismic stations deployed and maintained by multiple networks between 2000 to 2017. Data from 535 teleseismic earthquakes Mw>5.5 were to picked for P and PP to image the P wave velocity structure of the Caribbean mantle.

2021-07-28

SENAM_FWT2021, Li and Gao (2021), is a 3-D shear-wave velocity model of the eastern North American lithosphere.

2021-07-12

SoCal_BergEtAl2021_UpperCrustVsandVpVs, Berg et al. (2021), Shallow Crustal Shear Velocity and Vp/Vs across Southern California: Joint Inversion of Short-Period Rayleigh Wave Ellipticity, Phase Velocity, and Teleseismic Receiver Functions.

2021-07-01

CAM2016, Added XI files for 400 and 800.

2021-06-03

KEA20, Witek, Chang, Lim, Ning and Ning, a radially anisotropic shear wave velocity model for East Asia.

2021-06-03

SNEP_Ptomo, Jones, Reeg, Zandt, Gilbert, Owens, and Stachnik, P-wave teleseismic tomography of the Sierra Nevada and surroundings.

2021-04-05

SALSA3D, Ballard, Hipp, Begnaud, Young, Encarnacao, Chael, and Phillips (2016), is a tomographic model of compressional wave slowness in the earth’s mantle for improved travel time prediction and travel time prediction uncertainty.

2021-03-30

SPacific-rani, Kendall et al., (2021), A 3-D shear-wave isotropic and radially anisotropic shear wave speed model of the Pacific upper mantle.

SCA_123456i_007, Mustelier & Menke (2020), is a three-dimensional compressional velocity model of the crust and upper mantle beneath Southeastern North America.

2021-02-02

ENA_FWT2021, Gao and Li (2021), 3-D shear-wave velocity model in eastern North America using full-wave ambient noise tomography.

2021-02-02

AFRP20, Boyce et al. (2021), is an absolute P-wavespeed tomographic model with focus on African mantle structure, provided with and without crustal correction.

2021-01-12

IFM1_S_2020, Portner et al. (2020), is a3D Ps-P crustal tomography relative S wave model for Cleveland Volcano.

2020-12-08
Banda_ANT_CrustVs_2020, Zhang and Miller, (2020), is a 3-D crustal shear wave velocity model in the Banda Arc collision zone from ambient noise tomography.

2020-11-20
CWANT-PSP, Shen et al. (2018) is a 3-D shear velocity structure of the crust and uppermost mantle beneath the central and West Antarctica.

2020-11-04
AlaskaFWANT-Vs2019, Yang & Gao (2020) is a 3-D shear-wave isotropic model for Alaska and western Canada from full-wave ambient noise tomography with resolvable depth for the top 150 km.

2020-10-29
ANT-20, Lloyd, Wiens, Zhu, Tromp, Nyblade, Aster, et al. (2019), is a 3D tomographic model of the upper mantle and transition zone structure beneath Antarctica and the surrounding southern oceans.

2020-09-28
MeRE2020, El-Sharkawy et al. (2020), The Slab Puzzle of the Alpine‐Mediterranean Region: Insights from a new, High‐Resolution, Shear‐Wave Velocity Model of the Upper Mantle.

2020-09-30
Alaska_CVM_AKAN2020, Upgraded to Version 1.0.

2020-09-16
LITHO1.01, Pasyanos, Masters, Laske & Ma (2014), is an updated crust and lithospheric model of the Earth.

2020-08-28
CVM_H_v15_1, (map), Shaw et al. (2015), is a 3D Community Velocity Model – Harvard (CVM-H), a 3D structural velocity model for the southern California crust and upper mantle.

2020-07-28
US-Upper-Mantle-Vs.Xie.Chu.Yang.2018, (map), Jun, Chu, and Yang (2018), 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise.

2020-07-20
DBRD_NATURE2020, (map), Debayle, Bodin, Ricard, Durand (2020), Data for Seismic evidence for partial melt below tectonic plates by Debayle et al., 2020.

2020-06-25
Alaska.JointInversion_RF+Vph+HV-1.Berg.2020, (map), Berg, Lin, Allam, Schulte-Pelkum, Ward and Shen (2020), Shear Velocity Model of Alaska via Joint Inversion of Rayleigh Wave Ellipticity, Phase Velocities, and Receiver Functions across the Northern USArray.

2020-06-18
LSP_Eucrust1.0, (map), Lu, Stehly, Paul & AlpArray Working Group (2018), 3D shear-wave velocity model for the European crust and uppermost mantle from ambient noise tomography.

2020-05-21
Alaska_CVM_AKEP2020, (map), Eberhart-Phillips, Nayak and Thurber (2020), 3D P- and S-wave velocity models of Alaska from the joint inversion of regional earthquake locations, body-wave data, and surface-wave data.

2020-05-19
SAM5_P_2019, (map), Portner et al. (2020), uses relative arrival time residuals from 2,084 earthquakes recorded at 1,113 seismic stations from 42 temporary and permanent seismic networks across South America. Residuals are measured in four frequency bands and are inverted in a finite-frequency tomographic inversion.

2020-05-08
TX_EF_2020-S, (map), Porritt, Savvaidis, Young, Shirley, & Li (2020) , S-velocity model of the Eagle Ford of southeastern Texas from joint inversion of Ambient Noise Tomography and P to S Receiver Functions.

2020-05-06
iMUSH_localEQ_Ulberg_2020, (map), Ulberg, Creager, Moran, Abers, Thelen, Levander, Kiser, Schmandt, Hansen & Crosson (2020) , represents 3-D velocity models of the Mount St. Helens region using local-source travel-time tomography.

2020-04-21
SoCal.ANAT_Vs+RA.Wang.2020, (map), Wang, Yang, Liu, Jiang, Schulte-Pelkum, Basini, Tape and Tong (2020) is a radially shear wave velocity model from adjoint tomography of Rayleigh and Love waves at 5-50s extracted from three-component ambient noise cross correlation functions of Southern California.

2020-04-02
Alaska_CVM_AKAN2020, (ALL existing model netCDF files are updated to comply with our new repository, author and reference metadata templet.

2020-02-06
Midd_East_Crust_1, (map), Kaviani, Paul, Moradi, Mai, Pilia, Boschi, Rümpker, Lu, Tang, and Sandvol (2020), is a regional crustal and upper mantle shear-wave velocity model for the Middle East.

2020-01-29
CRUST1.0, (map), Laske, Masters, Ma, Pasyanos (2013), is a global crustal model specified on a 1-by-1 degree grid.

2020-01-28
Models added to EMC:

  • Casc16-P (map), Hawley, Allen, and Richards (2016) , a teleseismic P-wave velocity model of the western US.

  • Casc19-S (map), Hawley, and Allen (2019) , a teleseismic S-wave velocity model of the western US.

2020-01-27
Eight submodels of the Collaborative Seismic Earth Model (CSEM) are added to EMC:

  • CSEM_Australasia (map), Fichtner, Saygin, Kennett, Bunge, & Igel (2019), Australasian part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_Eastmed (map) Fichtner, Cubuk-Sabuncu, Blom, & Gokhberg (2019), Eastern Mediterranean part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_Europe (map), Fichtner, Rickers, Cubuk-Sabuncu, Blom & Gokhberg (2019), European part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_Iberia (map), Fichtner, & Villasenor (2019), Iberian part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_Japan (map), Fichtner, & Simute (2019), Japanese Islands part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_North_America (map), Fichtner, Rickers & Krischer (2019), North American and North Atlantic part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_North_Atlantic (map), Fichtner, Rickers & Krischer (2019), North Atlantic part of the Collaborative Seismic Earth Model (CSEM).

  • CSEM_South_Atlantic (map), Fichtner, & Colli (2019), South Atlantic part of the Collaborative Seismic Earth Model (CSEM).

2020-01-06
Alaska-LFeng-2019_vsv_gamma, (map), Feng and Ritzwoller (2019), A 3‐D Shear Velocity Model of the Crust and Uppermost Mantle Beneath Alaska Including Apparent Radial Anisotropy.

2020-01-03
TongaLau.Q.2019, (map), Wei and Wiens (2019, JGR), 3D models of Qp, Qs, Qp/Qs, and Qk (bulk attenuation) of the Tonga-Lau mantle wedge based on the 2009-2010 Ridge2000 East Lau Spreading Center Imaging project.

2019-11-19
NEAR-P15+NEAR-S16, (map), Civiero, et. al (2015, 2016), Teleseismic travel-time body- and shear-wave velocity models of the northern East African Rift.

2019-10-25
IBEM-P18+IBEM-S19, (map), Civiero, Custodio, Silveira, Corela, Strak and Arroucau (2018, 2019), Teleseismic travel-time body- and shear-wave velocity models of the Ibero-western Maghreb region.

2019-10-15
SEISGLOB2, netCDF file updated by the author.

2019-09-27
BBNAP19, (map), Boyce, Bastow, Golos, Rondenay, Burdick, & Van der Hilst (2019), is an absolute P-wave tomographic model with focus on eastern North American upper mantle structure.

2019-08-20
SoCal.ANT_Vph+Vgp.Qiu.2019, (map), Qiu, Lin, & Ben-Zion (2019), is a 3D shear-wave velocity model of Southern California from joint inversion of Rayleigh wave phase and group velocities from ambient noise cross-correlations.

2019-05-29
EMC-TX2019slab, (map) Lu, Grand, Lai, & Garnero (2019), provides shear velocity perturbations with respect to the averaged TNA/SNA model and compressional velocity perturbations with respect to the AK-135f model with the mean from the individual layers removed. The grid is not representative of the block size used in the inversion.

2019-05-14
EMC-GlobalEM-2015-02×02, (map) Sun, Kelbert and Egbert (2015), high resolution global electrical conductivity variations in the Earth’s mantle based on ground observatory data.

2019-05-14
EMC-GlobalEM-2009-10×10, (map) Kelbert, Schultz and Egbert (2009), global electromagnetic induction constraints on transition-zone water content variations.

2019-04-17
MHCB-MT, (map) DeLucia, Murphy, Marshak , and Egbert (2019), is a three-dimensional electrical resistivity Earth model for the Missouri high conductivity belt.

2019-04-15
Cascadia_ANT+RF_Delph2018 (map), Jonathan R. Delph, Alan Levander, and Fenglin Niu (2018), is a 3D vertical shear-wave velocity model of the Cascadian forearc from the joint inversion of ambient noise dispersion and receiver functions.

2019-03-20
3D2018_08Sv (map), Eric Debayle, Fabien Dubuffet, Stéphanie Durand, is the current update of the background model 3D2015_07Sv up to August 2018. It is based on the waveform modeling of 1,600,492 Rayleigh waves recorded between 1976 and August 2018.

2019-03-04
SoCal.ANT_Vph+HV-1.Berg.2018 (map), Berg, Lin, Allam, Qiu, Shen, & Ben-Zion (2018), is a 3D shear-wave velocity model of Southern California from joint inversion of Rayleigh wave ellipticity and phase velocity from ambient noise cross-correlations.

2019-01-09
Africa.ANT.Emry-etal.2018 (map), Emry, Shen, Nyblade, Flinders, and Bao (2018), 3D shear-wave velocity model of Africa from full-wave ambient noise tomography.

2018-10-25
Converted 2D & 3D Earth model files from netCDF to GeoCSV

2018-10-23
Release of the EMC-Tools on GitHub
https://github.com/iris-edu/EMC-ParaView

2018-10-03
Alaska-S+SW-2018 (map), Jiang, Schmandt, Ward, Lin, and Worthington (2018), 3D shear-wave velocity model of Alaskan upper mantle from the joint inversion of teleseismic S-wave travel-time residuals and Rayleigh wave dispersion.

2018-09-28
Added Alaska.ANT+RF.Ward.2018 (map), Ward & Lin (2018), a 3D shear-wave velocity model of the Alaskan Cordillera from the joint inversion of ambient noise tomography and receiver functions.

2018-07-30
Added iMUSH-MT (map), Bedrosian, Peacock, , Bowles-Martinez , Schultz, and Hill (2018), a three-dimensional electrical resistivity model for southwest Washington centered upon Mount St. Helens.

2018-07-23
Added NorthernAppalachians_Moho2018 (map), Cong Li (2018), the Moho depths beneath the northern Appalachian Mountains were extracted from 5875 teleseismic P wave receiver functions using the common conversion point (CCP) stacking method.

2018-07-03
Added NEUS-Vs2018 (map), Yand & Gao (2018), a 3-D shear-wave isotropic model for the northeastern United States from full-wave ambient noise tomography with resolvable depths down to 120 km

2018-05-15
Added ANA2_P_2018 (map), Portner, Delph, Biryol, Beck, Zandt, Özacar, Sandvol & Türkelli (2018), a regional finite-frequency teleseismic P-wave tomography model for the Eastern Mediterranean.

2018-05-11
Added the CAM2016, model. Priestley & Ho (2016), is online. This model represents a group of global upper mantle models based on multi-mode surface wave tomography. All models are defined on a 2 degree by 2 degree grid. Vsv and Vsh models are given for several lateral smoothing lengths. The models determined with the shorter smoothing length are applicable to the shallower depths while the models determined with the larger smoothing length are more appropriate to the deeper depths.

2018-05-11

Added the FWEA18 model, Tao, Grand and Niu (2018), model with its radial anisotropy confined to the uppermost mantle (above 220 km) is online. 1D Qmu model is fixed to QL6 (Durek & Ekström, 1996). All velocities are at 1 Hz.

2018-02-16

Added 3D2017_09Sv. This model, Debayle, E., F. Dubuffet, and S. Durand (2016), is the current update of the background model 3D2015_10Sv up to September 2017.

2017-12-20

OIINK_CUS_Moho2017 EMC model by Yang et al. (2017), is a Moho depth and crystalline crustal thickness model within the central United States and the footprint of the OIINK network derived from receiver function observations.

2017-12-14

SEISGLOB2 global dVs model is online. Durand, Debayle, Ricard, Zaroli, & Lambotte (2017), is a global shear velocity tomographic model based on the joint inversion of S SS and ScS delay tomes, Rayleigh surface wave phase velocity perturbations and splitting and coupling coefficients of normal modes.

SEISGLOB1 global dVs model is online. Durand, Debayle, Ricard, & Lambotte (2016), is a pure Sv tomographic model based on the joint inversion of Rayleigh surface wave phase velocity perturbations and splitting and coupling coefficients of normal modes.

2017-11-09

Moho_Temperature EMC model by Schutt, Lowry and Buehler (2017) provides latitude, longitude, temperature (°C), depth, Pn Velocity, temperature uncertainty (°C) at the base of the crust for the western United States.

2017-08-23

APVC+Puna.ANT+RF.Ward.2017 EMC model by Ward, Delph, Zandt, Beck, and Ducea (2017), is a 3D shear-wave velocity model of the Altiplano-Puna Volcanic Complex (APVC) and the Puna Plateau from the joint inversion of ambient noise tomography and receiver functions.

2017-07-18

SGLOBE-rani EMC model by Chang & Ferreira (2015) is online. This is a global radially anisotropic shear wave speed model with radial anisotropy allowed in the whole mantle. It is based on a seismic data set of over 43M seismic surface wave (fundamental and overtones) and body wave measurements.

2017-07-12

MEAN EMC reference Earth model based on the Earth model IASP91 is online.

2017-07-11

SAM4_P_2017 EMC model by Portner, Beck, Zandt & Scire (2017) is online. SAM4_P_2017 is a regional finite-frequency teleseismic P-wave tomography model for central Chile and Argentina. It uses relative arrival time residuals from 678 earthquakes recorded at 394 stations of a variety of temporary and permanent seismic deployments in Chile and Argentina.

2017-07-07

EAV09 EMC model by Chang & van der Lee (2010) is online. EAV09 is a 3D shear-wave velocity model for western Eurasia, Arabia, and northern Africa based on multiple data sets including regional S and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, teleseismic S and SKS arrival times, and independent Moho constraints.

2017-03-21

Added SEUS-MT electrical resistivity model by Benjamin S. Murphy and G.D. Egbert (2017), a three-dimensional electrical resistivity model for the southeastern United States. Inverse solution was found using ModEM.

2017-03-08

Web Visualization Tools”:http://ds.iris.edu/dms/products/emc/horizontal_slice.html upgraded to GMT 5. Contour option has been added to the horizontal slice and cross-section viewers.

2017-02-21

Upgrade Web Visualization Tools to to Python 3

2017-02-13

Added 3D2016_09Sv. This model, Debayle, E., F. Dubuffet, and S. Durand (2016), is the current update of the background model 3D2015_07Sv up to September 2016.

2017-02-09

Added SEMum_NA14. This model is an isotropic and radially anisotropic Vs model for the North American upper mantle which took advantage of the USArray TA deployment (Yuan et al., 2014).

2017-01-31

Added BO.ANT+TPWT.Ward.2016. This model, Ward, Zandt, Beck, Wagner and Tavera (2016), is a 3D shear-wave velocity model of the Bolivian Orocline (BO) from the joint inversion of ambient noise tomography and two-plane wave tomography.

2017-01-05

Added PnUS_2016. This model, Buehler & Shearer (2016), is a Pn tomography model for the contiguous United States. Model parameters include isotropic Pn velocity, anisotropy, vertical velocity gradient, and crustal thickness.

2016-08-23

Added 3D2016_03Sv model. This model, Eric Debayle, Fabien Dubuffet, Stéphanie Durand (2016), is the latest Sv wave model of the upper mantle and transition zone (see 3D2015_10Sv).

2016-08-19

Added US.2016, Shen & Ritzwoller (2016), a 3D shear-wave velocity model of the US from joint inversion of surface wave dispersion from ambient noise and earthquakes, Rayleigh wave H/V ratio, and receiver functions.

2016-08-10

All model netCDF files are checked for CF-Convention Compliance and are updated as needed.

2016-07-11

Added OIINK_VS_model, Chen et al. (2016), this is a shear wave velocity model derived from Rayleigh wave phase velocities recorded by the OIINK Flex Array and Transportable Array stations in the central United States.

2016-06-27

Added WUS-CAMH-2015, Chai, Ammon, Maceira and Herrmann (2015), this model is a shear velocity model that combines spatially interpolated/smoothed receiver functions, surface-wave dispersion and gravity observations through a 3D simultaneous inversion to image the subsurface S-wave velocity structure of the western U.S. region.

2016-05-12

Added the 3D2015_10Sv model. This model, Debayle, E., F. Dubuffet, and S. Durand (2016), is the latest Sv wave model of the upper mantle and transition zone from the authors based on the waveform modeling of 1,377,550 Rayleigh waves recorded between 1976 and October 2015.

2016-01-20
Added the US-Crust-Upper-mantle-Vs.Porter.Liu.Holt.2015 model. This model (Potter, Liu and Holt, 2016) is based on the shear velocity inversion of Rayleigh wave phase velocities calculated from ambient noise and wave-gradiometry measurements.

2016-01-07
Added the US-CrustVs-2015 model. The US-CrustVs-2015 model, Schmandt & Lin (2014) is a Crust thickness and Crust and Uppermost mantle Vs model for the contiguous U.S.

2015-11-23
Added the Crustal_Thickness_Error model. The Crustal_Thickness_Error model, Gilbert (2012) is a model of crustal thicknesses values that are based on common conversion point (CCP) stacking of receiver functions calculated from data recorded by USArray stations and other permanent and temporary deployments in the western United States.

2015-11-09
Added SPani |SPani, Tesoniero, Auer, Boschi, and Cammarano (2015), is a joint model of radially anisotropic P- and S-velocity variation of the whole mantle based on the inversion of fundamental Rayleigh and Love surface waves up to the sixth overtone and major P- and S-body wave phases.

2015-08-13
Added TW-PS-H14, Huang, Wu, Song, Chang, Lee, Chang, and Hsieh (2014), a 3D Vp, Vs, and Vp/VS models of Taiwan region from joint inversion of P- and S-wave travel times.

2015-08-12
Added YS-P-H15, Huang, Lin, Schmandt, Farrell, Smith, and Tsai (2015), a 3D P-wave velocity model of Yellowstone from joint inversion of local earthquake and teleseismic travel-time data.

2015-08-11
Added MCR.MT.Yang-et.al.2015.resistivity, Yang, Kelbert, Egbert & Meqbel (2015), a 3D electrical resistivity model of the Midcontinent Rift recovered by inverting 222 magnetotelluric stations from EarthScope USArray dataset in Midcontinent Rift area, north-central USA.

2015-06-13
EMC 3D Visualizer is released (https://seiscode.iris.washington.edu/projects/iris-emc-3d-visualizer)

2015-05-11
Added Andes.ANT.Ward.2013, Ward, Zandt, Beck, Porter, Wagner, Minaya and Tavera (2013), a 3D shear-wave velocity model of the Central Andes from ambient noise tomography. The model incorporates broadband seismic data from 20 seismic networks deployed incrementally in the Central Andes from 1994 May to 2012 August, to image the shear wave velocity structure of the South American Cordillera.

2015-05-11
Added APVC.ANT+RF.Ward.2014, Ward, Zandt, Beck, Christensen, and McFarlin (2014), a 3D shear-wave velocity model of the Altiplano-Puna Volcanic Complex (APVC) from the joint inversion of ambient noise tomography and receiver functions.

2015-05-04
EMC 3D Visualizer is available

2015-01-20
ak135-f (http://ds.iris.edu/ds/products/emc-ak135-f) density unit was corrected from Mg/km3 to Mg/m3 per user notification. The original unit was the same as http://rses.anu.edu.au/seismology/ak135/ak135f.html

2015-01-07
Unified depths of the GyPSuM kmps models.

2015-01-06
Added Taiwan.TTT.KWR.2012 model, Kuo-Chen, Wu & Roecker (2012), a model based on a travel-time tomographic method from active- and passive-source experiments of Taiwan Integrated Geodynamic Research (TAIGER) and other permanent seismic networks.

2014-12-01
Added S362ANI+M model, Moulik and Ekstrom (2014), is an anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms

2014-10-20
Added US-SL-2014 model, Schmandt & Lin (2014), is a P and S teleseismic body-wave tomography of the mantle beneath the United States.

2014-07-07
Added supplemental information page link to LLNL-G3Dv3

2014-06-18
Added link to the CRUST 1.0 model on the IRIS EMC – Reference Earth Models page

2014-05-05
Created a supplemental information page for Cascade.ANT.Gao-Shen.2014

2014-04-23
Version 2.0 visualization tools are online.
In version 2.0 ALL Earth model variables, contained in the netCDF model file, are available for plotting.

2014-03-19
Created a supplemental information page for DNA13 Earth model.

2014-03-05
Added Cascade.ANT.Gao-Shen.2014 – Gao and Shen (2014), A full-wave ambient noise tomographic method and the analysis of Rayleigh waves from ~1000 stations between 1995 to 2012, including the EarthScope USArray Transportable Array and many other permanent and flexible arrays.

2014-03-03
Added SAWum-NA2 — Yuan and Romanowicz (2011), A high-resolution North American shear velocity model of upper mantle

2014-01-27
Added DNA13 — Porritt, Allen and Pollitz (2014), P- and S-velocity models for the western US integrating body- and surface-wave constraints

2013-09-06
Added SEMum — Lekic and Romanowicz (2011), A high-resolution global shear velocity model of upper mantle

2013-03-12
Added wUS-SH-2010 — Schmandt and Humphreys (2010), P and S teleseismic body-wave tomography of the western United States, wUS-SH-2010

2013-02-08
Added S2.9EA — Kustowski, Ekstrom and Dziewonski (2008), a model of shear-wave velocity in the upper-mantle beneath Eurasia, S2.9EA

2013-01-31
Added STW105 — Kustowski, Ekstrom and Dziewonski (2008), a transversely isotropic reference Earth model STW105

2013-01-31
Added S362ANI & S362WMANI — Kustowski, Ekstrom and Dziewonski (2008), anisotropic S velocities Earth models S362ANI & S362WMANI

2012-12-20
Added LLNL-G3Dv3 — Simmons, Myers, Johannesson & Matzel (2012) , a global-scale model of the crust and mantle P-wave velocity with regional-scale details. , LLNL-G3Dv3

2012-08-07
Added Regional 3-D electrical conductivity model of Snake River Plain / Yellowstone, USA based on magnetotelluric data, SRPY-MT

2012-03-19
Added the tomography models HMSL-P06 & HMSL-S06

2012-02-14
Added ParaView to the Desktop Tools page

2012-02-06
Added tomography model PNW10-S

2012-02-01
The Generalized X-section Viewer with the ability of plotting sections in an arbitrary direction has replaced the regular cross section viewer.

2012-01-19
The Slab Models for Subduction Zones (Slab) are added to the Horizontal Slice Viewer

2012-01-13
The Desktop Tools page is a quick startup guide for some visualization desktop applications that allow 3-D visualizations of EMC’s netCDF model files

2011-11-21
Added magnitude scale below cross-section and also revised the vertical scale to represent aspect ratio of 1

2011-11-14
EMC online

2011-11-14
Added tomography model TX2011

2011-11-14
Renamed tomography model Grand2000 to TX2000

2011-09-26
Added the Externally Hosted Models category to the Reference Models page that includes links to reference Earth models that are not hosted by EMC.

2011-09-20
Added GyPSuM tomography model

2011-09-20
Added TNA/SNA reference model

2011-08-31
The beta release of the IRIS EMC is now online

2011-06-24
Added SAW642AN and SAW642ANb tomography models

2011-06-16
The beta release of the IRIS EMC is under review

2010-12-09
The alpha release of the IRIS EMC visualization tools is now online

2010-10-05
The pre-alpha version of the IRIS Horizontal Slice Viewer is now online

2010-09-13
The beta test version of the IRIS EMC Tomoserver is now online

2010-08-26
A test Coordinate Selection Tool is added to the Visualization page

2010-08-09
Distributed the IRIS Earth Model Collaboration Technical Plan
For additional information contact product@iris.washington.edu.

2010-05-20
The IRIS Earth Model Collaboration data product Trade Study phase started

The Trade Study phase of the new IRIS Earth Model Collaboration data product started at IRIS DMC. The objectives of this phase are:

  • Organize and summarize relevant Earth Models
  • Organize and summarize the existing presentation tools
  • Identify the key elements of the Earth Model metadata
  • Form a Technical Experts team

Citations and DOIs

  • Trabant, C., A. R. Hutko, M. Bahavar, R. Karstens, T. Ahern and R. Aster (2012), Data products at the IRIS DMC: stepping-stones for research and other application, Seismological Research Letters, 83(6), 846:854. doi: “https://doi.org/10.1785/0220 120032

Credits

  • IRIS EMC

Timeline

2016-08-19
added

Contact

Categories

14:38:37 v.c03ec7af