Data Services Products: EMC-References IRIS EMC References


IRIS Earth Model Collaboration – Publications cited by the IRIS EMC pages


IRIS Earth Model Collaboration – Publications cited by the IRIS EMC pages


Antolik, M., Gu, Y. J., Ekström, G., and Dziewonski, A. M. (2003). J362D28: a new joint model of compressional and shear velocity in the Earth’s mantle. Geophysical Journal International, 153(2):443-466.

Arroucau, P., Custódio, S., Civiero, C., Dias, N.A., Silveira, G., 2017. PRISM3D: a preliminary 3D reference seismic model of the crust and upper mantle beneath Iberia. Geophys. Res. Abstr. 19, EGU2017-16801.​

Arroucau, P., Custódio, S., Civiero, C., Dias, N.A., Silveira, G., Diaz, J., Villaseñor, A., in preparation. PRISM3D: a preliminary reference seismic model for Iberia and adjacent areas. Geophysical Journal International.

Audet, P., M.G. Bostock, D.C. Boyarko, M.R. Brudzinski, and R.M. Allen. 2010. “Slabmorphology in the Cascadia fore arc and its relation to episodic tremor and slip.” J. Geophys. Res. 115, B00A16. doi:10.1029/2008JB006053.

Auer, L., L. Boschi, T. W. Becker, T. Nissen-Meyer, and D. Giardini (2014), Savani: A variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets, J. Geophys. Res. Solid Earth, 119, 3006–3034, doi:10.1002/2013JB010773.

Balmino, G., N. Vales, S. Bonvalot, and A. Briais (2012), Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies, J. Geod., 86(7), 499–520, doi:10.1007/s00190-011-0533-4.

Bassin, C., G. Laske, and G. Masters. 2000. “The Current Limits of Resolution for Surface Wave Tomography in North America.” EOS, Trans. Am. Geophys. Un. 81, F897.

Bedrosian, P.A., Peacock, J.R., Bowles-Martinez, E., Schultz, A, and Hill, G.J. (2018) Crustal inheritance and a top-down control on arc magmatism at Mount St. Helens, Nature Geoscience, in press.

Bedle, H., and S. van der Lee. 2009. “S velocity variations beneath North America.” J. Geophys. Res. 114:B07308.

Berg, E. M., Lin, F.‐C., Allam, A., Qiu, H., Shen, W., & Ben‐Zion, Y. (2018). Tomography of Southern California via Bayesian joint inversion of Rayleigh wave ellipticity and phase velocity from ambient noise cross‐correlations. Journal of Geophysical Research: Solid Earth, 123, 9933–9949.

Brudzinski, M., and R.M. Allen. 2007. “Segmentation in episodic tremor and slip all along Cascadia.” Geology 35 (10), 907—910. doi:10.1130/G23740A.1.

Boschi, L., and G. Ekström, New images of the Earth’s upper mantle from measurements of surface wave phase velocity anomalies, J. Geophys. Res., 107(B4), doi:10.1029/2000JB000059, 2002.

Boyarko, D.C., and M.R. Brudzinski. 2010. Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone.: J. Geophys. Res. 115:B00A22. doi:10.1029/2008JB006064.

Boyce, A., I. D. Bastow, E. M. Golos, S. Rondenay, S. Burdick and R. Van der Hilst (2019), Variable modification of continental lithosphere during the Proterozoic Grenville orogeny: Evidence from teleseismic P-wave tomography, Earth and Planetary Science Letters, 525, 115763, doi:10.1016/j.epsl.2019.115763.

Buehler J.S., and P.M. Shearer (2016), Uppermost mantle seismic velocity structure beneath USArray, J. Geophys. Res., 121, doi:10.1002/2016JB013265.

Burdick, S., R. D. van der Hilst, F. L. Vernon, V. Martynov, T. Cox, J. Eakins, G. Karasu, J. Tytell, L. Astiz, and G. L. Pavlis. 2010. “Model update January 2010; upper mantle heterogeneity beneath North America from P-wave travel time tomography with global and USArray transportable array data.” Seism. Res. Lett., 81(5), pp. 689-693. doi 10.1785/gssrl.81.5.689.

Burdick et al., (2014) Model Update January 2013: Upper Mantle Heterogeneity beneath North America from Travel-Time Tomography with Global and USArray Transportable Array Data. Seis. Res. Lett. 85, 77–81. doi:10.1785/0220130098.

Burdick et al., (2017) Model update May 2016: upper-mantle heterogeneity beneath North America from travel-time tomography with global and USArray data. Seismol. Res. Lett., 88, pp. 319-325, doi:10.1785/0220160186.

Cara, M., and J. Leveque (1987), Waveform inversion using secondary observables, Geophysical Research Letters, 14(10), 1046–1049.

Chang, S.-J., S. van der Lee, M.P. Flanagan, H. Bedle, F. Marone, E.M. Matzel, M.E. Pasyanos, A.J. Rodgers, B. Romanowicz, and C. Schmid (2010), Joint inversion for three-dimensional S velocity mantle structure along the Tethyan margin, J. Geophys. Res., 115, B08309, doi:10.1029/2009JB007204.

Chen, C., H. Gilbert, C. Andronicos, M. W. Hamburger, T. Larson, S. Marshak, G. L. Pavlis, and X. Yan (2016), Shear velocity structure beneath the central United States: implications for the origin of the Illinois Basin and intraplate seismicity, Geochem. Geophys. Geosyst., 17, doi:10.1002/2015GC006206.

Civiero, C., Strak, V., Custódio, S., Silveira, G., Rawlinson, N., Arroucau, P., & Corela, C. (2018). A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography. Earth and Planetary Science Letters, 499, 157–172. doi:10.1016/j.epsl.2018.07.024

Civiero, C., Custódio, S., Rawlinson, N., Strak, V., Silveira, G., Arroucau, P., & Corela, C. (2019). Thermal nature of mantle upwellings below the Ibero-western Maghreb region inferred from teleseismic tomography. Journal of Geophysical Research: Solid Earth, 124. doi:10.1029/2018JB016531

Civiero, C., J. O. S. Hammond, S. Goes, S. Fishwick, A. Ahmed, A. Ayele, C. Doubre, B. Goitom, D. Keir, and J. Kendall (2015), Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography, Geochemistry, Geophysics, Geosystems, 16, 2949–2968, doi:10.1002/2015GC005948.

Civiero, C., Goes, S., Hammond, J. O., Fishwick, S., Ahmed, A., Ayele, A., et al. (2016). Small-scale thermal upwellings under the northern East African Rift from S travel time tomography. Journal of Geophysical Research: Solid Earth, 121, 7395–7408. doi:10.1002/2016JB013070.

Debayle, E., F. Dubuffet, and S. Durand (2016), An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy, Geophys. Res. Lett., 43, doi:10.1002/2015GL067329.

Debayle, E., and Y. Ricard (2012), A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements, Journal of Geophysical Research: Solid Earth, 117(B10).

Debayle, E., and M. Sambridge (2004), Inversion of massive surface wave data sets: model construction and resolution assessment, Journal of Geophysical Research: Solid Earth, 109(B2).

Delph, J. R., Levander, A., & Niu, F. (2018). “Fluid Controls on the Heterogeneous Seismic Characteristics of the Cascadia Margin”. Geophysical Research Letters, 45(20), 11,021-11,029. doi:10.1029/2018GL079518

Delph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., and Beck, S.L., 2017, Imaging a magma plumbing system from MASH zone to magma reservoir: Earth and Planetary Science Letters, v. 457, p. 313–324, doi:10.1016/j.epsl.2016.10.008.

Delph, J.R., Zandt, G., and Beck, S.L., 2015, A new approach to obtaining a 3D shear wave velocity model of the crust and upper mantle: An application to eastern Turkey: Tectonophysics, v. 665, doi:10.1016/j.tecto.2015.09.031.

DeLucia, M.S., Murphy, B.S., Marshak, S., Egbert, G.D., 2019, The Missouri High-Conductivity Belt, revealed by magnetotelluric imaging: Evidence of a trans-lithospheric shear zone beneath the Ozark Plateau, Midcontinent USA?. Tectonophysics 753, 111-123, doi:10.1016/j.tecto.2019.01.011

Durand S., E. Debayle, Y. Ricard, C. Zaroli, S. Lambotte (2017), Confirmation of a change in the global shear velocity pattern at around 1,000 km depth, Geophys. J. Int., 211(3), 1628-1639

Durand S., E. Debayle, Y. Ricard, S. Lambotte (2016), Seismic evidence for a change in the large scale tomographic pattern across the D layer, Geophys. Res. Lett., 43(15), 7928-7936

Durand S., E. Debayle and Y. Ricard, (2015), Rayleigh wave phase velocity and error maps up to the fifth overtone, Geophys. Res. Lett., 42(9), 3266-3272

Durek, J.J. and Ekstrom, G. 1996. “A radial model of anelasticity consistent with long period surface wave attenuation.” Bull. Seism. Soc. Am. 86:144-158.

Dziewonski, A.M. 1984. “Mapping the Lower Mantle’ Determination of Lateral Heterogeneity in P Velocity up to Degree and Order 6” J. Geophys. Res. 89:5929-5952.

Dziewonski, A.M., and D.L. Anderson. 1981. “Preliminary reference Earth model.” Phys. Earth Plan. Int. 25:297-356.

Dziewonski, A.M., A.L. Hales, and E.R. Lapwood. 1975. “Parametrically simple earth models consistent with geophysical data Phys.” Earth Plan. Int. 10:12.

Engdahl, et al., (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743.

Egbert G.D. and A. Kelbert. 2012. “Computational recipes for electromagnetic inverse problems.” Geophysical Journal International, 189:251-267, DOI: 10.1111/j.1365-246X.2011.05347.x.

Ekström, G. (2011). A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25-250 s. Geophysical Journal International, 187(3):1668-1686.

Emry, E. L., Shen, Y., Nyblade, A. A., Flinders, A., & Bao, X. (2018). Upper mantle Earth structure in Africa from full-wave ambient noise tomography. Geochemistry, Geophysics, Geosystems,19. doi:10.1029/2018GC007804

Engdahl, E.R., R. van der Hilst, and R. Buland. 1998. “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination.” Bull. Seismol. Soc. Am., 88:722-743.

Feng, L., and M.H.Ritzwoller, A 3-D shear velocity model of the crust and uppermost mantle beneath Alaska including apparent radial anisotropy, J. Geophys. Res. Solid Earth, 124, 19,468-10,497, doi:10.1029/2019JB018122, 2019.

Gao, H., and Y. Shen (2014), Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc, Earth Planet. Sci. Lett., 309, 222-233, doi:10.1016/j.epsl.2014.01.012.

Gao, H., and Y. Shen (2012), Validation of Shear-wave velocity models of the Pacific Northwest, Bull. Seism. Soc. Am., 102(6), 2611-2621, doi:10.1785/0120110336.

Gilbert, H., 2012, Crustal structure and signatures of recent tectonism as influenced by ancient terranes in the western United States, Geosphere, 8, 141–157. doi:10.1130/GES00720.1

Grand, S.P. 2002. “Mantle Shear-Wave Tomography and the Fate of Subducted Slabs.” Phil. Trans. R. Soc. Lond. 360:2475-2491.

Grand, S.P., and D.V. Helmberger. 1984. “Upper mantle shear structure of North America.” Geophys. J. R. Astr. Soc. 76:399-438.

Grand, S.P., R.D. van der Hilst, and S. Widiyantoro. 1997. “Global Seismic Tomography: a Snapshot of Convection in the Earth.” GSAToday:1-7.

Gung, Y. and B. Romanowicz. 2004. “Q tomography of the upper mantle using three-component long-period waveforms.” Geophysical Journal International, 157:813-830.

Hager, B.H., and R.W. Clayton. 1989. Constraints on the structure of mantle convection. In Mantle convection: plate tectonics and global dynamics (ed. W.R. Peltier). New York:Gordon & Breach.

Herrmann, R. B., C. J. Ammon, and H. Benz (2013), Group velocity dispersion for North America. [Available at]

Ho, T., K. Priestley, and E. Debayle (2016), A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements, Geophysical Journal International, 207(1), 542–561.

Houser, C., G. Masters, P. Shearer and G. Laske. 2008. “Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms.” Geophys. J. Int., 174:195-212.

Huang, H.-H., F.-C. Lin, B. Schmandt, J. Farrell, R. B. Smith, and V. C. Tsai (2015), The Yellowstone magmatic system from the mantle plume to the upper crust, Science, 348, doi:10.1126/science.aaa5648.

Ingebritsen, S.E. and R.H. Mariner. 2010. “Hydrothermal heat discharge in the Cascade Range, northwestern United States. J. Volcanol. Geotherm. Res. vol. 196 (Issues 3—4), 208—218. doi:10.1016/j.jvolgeores.2010.07.023 0377—273.

Jadamec, M. A., & Billen, M. I. (2010). Reconciling surface plate motions with rapid three‐dimensional mantle flow around a slab edge. Nature, 465(7296), 338–341. doi:10.1038/nature09053

James D.E., M.J. Fouch, R.W. Carlson and J.B. Roth. 2011. “Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track.” Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2011.09.007.

Jiang, C., Schmandt, B., Ward, K. M., Lin, F., and Worthington, L. L., (2018), Upper mantle seismic structure of Alaska from Rayleigh and S-wave tomography, Geophysical Research Letters, 45, 10350-10359. doi:10.1029/2018GL079406

Kennett, B.L.N. (Compiler and Editor). 1991. “IASPEI 1991 Seismological Tables.” Bibliotech, Canberra, Australia, 167 pp.

Kennett B.L.N. and E.R. Engdahl. 1991. “Travel times for global earthquake location and phase association.” Geophysical Journal International, 105:429-465.

Kennett B.L.N., Engdahl E.R. and R. Buland. 1995. “Constraints on seismic velocities in the earth from travel times” Geophys. J. Int. 122:108-124.

Kelbert A., Egbert G.D., C. deGroot-Hedlin. 2012. “Crust and upper mantle electrical conductivity beneath the Yellowstone Hotspot Track” Geology, v. 40, p. 447-450, doi:10.1130/G32655.1.

Kuo-Chen, H., F. T. Wu, and S. W. Roecker (2012) Three-Dimensional P Velocity Structures of the Lithosphere Beneath Taiwan from the Analysis of TAIGER and Related Seismic Data sets, J. Geophys. Res., 117, B06306, doi:10.1029/2011JB009108.

Kustowski, B, G. Ekstrom, and A. M. Dziewonski. 2008. “Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model” J. Geophys. Res., 113:B06306, doi:10.1029/2007JB005169.

Kustowski B., G. Ekstrm, and A. M. Dziewoski. 2008. “The shear-wave velocity structure in the upper mantle beneath Eurasia” Geophys. J. Int., 174:978-992, doi:10.1111/j.1365-246X.2008.03865.x.

Laske, G., G. Masters., Z. Ma, and M. Pasyanos. 2013. “Update on CRUST1.0 – A 1-degree Global Model of Earth’s Crust” Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013.

Lekic, V., M.P. Panning, and B.A. Romanowicz. 2010. “A simple method for improving crustal corrections in waveform tomography.” Geophys. J. Int. 182:265-278.

Lekic, V. and B. Romanowicz. 2011. “Inferring upper-mantle structure by full waveform tomography with the spectral element method.” Geophys. J. Int. 185(2), 799-831.

Li, C., Gao, H., Williams, M. L., & Levin, V. (2018). Crustal thickness variation in the northern Appalachian Mountains: Implications for the geometry of 3-D tectonic boundaries within the crust. Geophysical Research Letters, 45. doi:10.1029/2018GL078777

Li et al., (2008) A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst., 9, doi:10.1029/2007GC001806.

Li, X.-D., Romanowicz, B., 1995. Comparison of global waveform inversions with and without considering cross-branch modal coupling. Geophys. J. Int. 121, 695-709.

Li, X., Romanowicz, B., 1996. Global mantle shear velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res 101, 22245-22273.

Lu, C., Grand, S.P, Lai, H, and E.J. Garnero, 2019, TX2019slab: A New P and S Tomography Model Incorporating Subducting Slabs, under revision.

Maceira, M., and C. J. Ammon (2009), Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure, J. Geophys. Res., 114, B02314, doi:10.1029/2007JB005157.

Marone, F., S. van der Lee and D. Giardini 2004. “Three-dimensional upper-mantle S-velocity model for the Eurasia-Africa plate boundary region.” Geophys. J. Int. 158:109-130.

Megnin, Charles and Barbara Romanowicz. 2000. “The shear velocity structure of the mantle from the inversion of of body, surface and higher modes waveforms.”, Geophys. J. Int. 143:709-728.

Montagner J.P. & B.L.N. Kennett. 1996. “How to reconcile body-wave and normal-mode reference Earth models?” Geophys. J. Int. 125:229-248.

Montagner, J.-P., Griot-Pommera, D.-A., Lave, J., 2000. How to relate body wave and surface wave anisotropy? J. Geophys. Res. 105, 19,015-019,027.

Mooney, W.D., G. Laske, and G. Masters. 1998. “A global crustal model at 5×5 degrees.” J. Geophys. Res. 103:727-747.

Moulik, P. and G. Ekstrom, 2014, An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms, Geophys. J. Int., 199(3), 1713-1738, doi: 10.1093/gji/ggu356.

Murphy, B.S. and G.D. Egbert (2017), Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and Appalachian topographic rejuvenation. Earth and Planetary Science Letters 462, 66-75. doi:10.1016/j.epsl.2017.01.009.

Myers, S.C., G. Johannesson, and W. Hanley. 2007. “A Bayesian hierarchical method for multiple-event seismic location.” Geophys. J. Int., 171:1049-1063, doi:10.1111/j.1365-246X.2007.03555.x.

Myers, S.C., G. Johannesson, and W. Hanley. 2009. “Incorporation of probabilistic seismic phase labels into a Bayesian multiple-event seismic locator.” Geophys. J. Int., 177:193-204, doi:10.1111/j.1365-246X.2008.04070.x.

Myers, S.C., G. Johannesson, and N.A. Simmons. 2011. “Global-scale P wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 1. Data set development.” J. Geophys. Res., 116:B04304, doi:10.1029/2010JB007967.

Nolet, Guust. 1990. “Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seis mographs.” J. Geophys. Res. 95:8499-8512.

Obrebski, M., R.M. Allen, F. Pollitz, and S.-H. Hung. 2011. “Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities.” Geophys. J. Int. 185:1003-1021.

Obrebski, M., R.M. Allen, M. Xue, and S.-H. Hung. 2010. “Slab-Plume Interaction beneath the Pacific Northwest.” Geophys. Res. Lett. 37:L14305.

Pavlis, G.L , K. Sigloch, S. Burdick, M.J. Fouch, and F. Vernon. 2012. “Unraveling the geometry of the Farallon Plate: Synthesis of three-dimensional imaging results from the USArray.” in press, Tectonophysics, 2012.

Panning, M.P., V. Lekic, and B.A. Romanowicz. 2010. “The importance of crustal corrections in the development of a new global model of radial anisotropy.” J. Geophys. Res. 115.

Panning, M.P., and B.A. Romanowicz. 2006. “A three dimensional radially anisotropic model of shear velocity in the whole mantle.” Geophys. J. Int. 167:361-379.

Porritt, R.W., R.M. Allen, D.C. Boyarko , and M.R. Brudzinski. 2011. “Investigation of Cascadia segmentation with ambient noise tomography.” Earth and Planetary Science Letters, 309(1-2), 67-76, ISSN 0012-821X, DOI: 10.1016/j.epsl.2011.06.026.

Porritt, R. W., R.M. Allen, and F. F. Pollitz. 2014. “Seismic imaging east of the Rocky Mountains with USArray.” Earth Planet. Sci. Lett..

Porter, R., Y. Liu, and W. E. Holt (2016), Lithospheric records of orogeny within the continental U.S., Geophys. Res. Lett., 43, doi:10.1002/2015GL066950.

Portner, D.E., Beck, S., Zandt, G., & Scire, A. (2017) The nature of subslab slow velocity anomalies beneath South America, Geophysical Research Letters, 44, doi:10.1002/2017GL073106.

Priestley, K., and D. McKenzie (2013), The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle, Earth and Planetary Science Letters, 381, 78–91.

Priestley, K., and D. McKenzie (2006), The thermal structure of the lithosphere from shear wave velocities, Earth and Planetary Science Letters, 244(1), 285–301.

Qiu, H., Lin, F. C., & Ben‐Zion, Y. ( 2019). Eikonal tomography of the Southern California plate boundary region. Journal of Geophysical Research: Solid Earth, 124. doi:10.1029/2019JB017806

Ritsema, J., Deuss, A., van Heijst, J., and J.H., W. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, tele-
seismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3):1223-1236.

Ritsema, J., Deuss, A., van Heijst, H.J., Woodhouse, J.H., 2011, S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1,223-1,236.

Ritsema, J. and van Heijst, H. J. (2002). Constraints on the correlation of P- and S-wave velocity heterogeneity in the mantle from P, PP, PPP and PKPab traveltimes. Geophysical Journal International, 149(2):482-489.

Richards, M.A., B.H. Hager, and N.H. Sleep. 1988. “Dynamically supported geoid highs over hotspots: Observation and theory.” J. Geophys. Res. 93:7690-7780.

Roth, J.B., M.J. Fouch, D.E. James, and R.W. Carlson. 2008. “Three-dimensional seismic velocity structure of the northwestern United States.” Geophys. Res. Lett. 35:L15304.

Shen, W. & Ritzwoller, M.H., 2016. Crustal and uppermost mantle structure beneath the United States, J. geophys. Res., doi:10.1002/2016JB012887.

Simmons, N.A., S.C. Myers, G. Johannesson, and E. Matzel. 2012. “LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction.” J. Geophys. Res. 117:B10302, doi:10.1029/2012JB009525.

Simmons, N.A., S.C. Myers, and G. Johannesson. 2011. “Global-scale P wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 2. Tomographic inversion.” J. Geophys. Res. 116:B04305, doi:10.1029/2010JB007969.

Simmons, N.A., A.M. Forte, L. Boschi, and S.P. Grand. 2010. “GyPSuM: A joint tomographic model of mantle density and seismic wave speeds.” J. Geophys. Res. 115:B12310.

Schmandt, B. and E. Humphreys. 2010a. “Complex subduction and small-scale convection revealed by body-wave tomography of the western United States mantle.” Earth and Planetary Science Letters, 297, 435-445, doi:10.1016/j.epsl.2010.06.047.

Schmandt, B., Lin, F. C., & Karlstrom, K. E. (2015). Distinct crustal isostasy trends east and west of the Rocky Mountain Front. Geophysical Research Letters. doi:10.1002/2015GL066593

Schmandt, B. and E. Humphreys. 2010b. “Seismic heterogeneity and small-scale convection in the southern California upper mantle.” G-cubed, 11, Q05004, doi:10.1029/2010GC003042.

Sigloch, K. 2011. “Mantle provinces under North America from multifrequency P wave tomography.” Geochemistry, Geophysics, Geosystems, 18(2), Q02W08, doi:10.1029/2010GC003421.

Schutt, D.L., Lowry A.R., and Buehler, J.S., in press, Moho temperature and mobility of the lower crust in the western United States: Geology.

Tanimoto, T. 1990. “Long wavelength S-wave velocity structure throughout the mantle”, Geophy. J. Int., 100:327-336.

Tao K., Grand S. P. and Niu F. N. (2018), Seismic structure of the upper mantle beneath Eastern Asia from full waveform seismic tomography, Geochemistry, Geophysics, Geosystems 10.1029/2018GC007460.

Tesoniero, A., L. Auer, L. Boschi, and F. Cammarano (2015), Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012026.

Van der Lee, S., and Andrew Frederiksen. 2005. Surface Wave tomography applied to the North American upper mantle, in AGU Monograph. Seismic Earth: Array Analysis of Broadband Seismograms, Eds: Levander A., and G. Nolet, 67-80.

Van der Lee, S. and Guust Nolet 1997. “Upper mantle S-velocity structure of North America.” J. Geophys. Res. 102:22815-22838.

Ward, K. M., and Lin, F., (2018), Lithospheric Structure Across the Alaskan Cordillera from the Joint Inversion of Surface Waves and Receiver Functions, Journal of Geophysical Research: Solid Earth, 123, 8780-8797. doi:10.1029/2018JB015967

Ward, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., and Tavera, H., 2014, Erratum: Ambient noise tomography across the central Andes: Geophysical Journal International, v. 196, p. 1264–1265, doi:10.1093/gji/ggt429.

Ward, K. M., Porter, R. C., Zandt, G., Beck, S. L., Wagner, L. S., Minaya, E., and Tavera, H., 2013, Ambient noise tomography across the central Andes: Geophysical Journal International, v. 194, p. 1559–1573, doi:10.1093/gji/ggt166.

Ward, K. M., Delph, J. R., Zandt, G., Beck, S. L., and Ducea, M. N., (2017), Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust, Scientific Reports. doi:10.1038/s41598-017-09015-5.

Ward, K. M., G. Zandt, S. L. Beck, D. H. Christensen, and H. McFarlin (2014), Seismic imaging of the magmatic underpinnings beneath the Altiplano-Punavolcanic complex from the joint inversion of surface wave dispersion and receiver functions, Earth and Planetary Science Letters, 404©, 43–53, doi:10.1016/j.epsl.2014.07.022.

Ward, K. M., Zandt, G., Beck, S. L., Wagner, L. S., and Tavera, H., (2016), Lithospheric structure beneath the northern Central Andean Plateau from the joint inversion of ambient noise and earthquake-generated surface waves, Journal of Geophysical Research: Solid Earth. doi:10.1002/2016JB013237.

Wei, S. S. and D. A. Wiens (2019), High bulk and shear attenuation due to partial melt in the Tonga-Lau back-arc mantle, J. Geophys. Res.: Solid Earth, 124, doi:10.1029/2019JB017527.

Wei, S. S., Y. Zha, W. Shen, D. A. Wiens, J. A. Conder, and S. C. Webb (2016), Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography, Geochem., Geophys., Geosyst., 17(11), 4705-4724, doi: 10.1002/2016GC006656.

Wei, S. S., D. A. Wiens, P. E. van Keken, and C. Cai (2017), Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration, Science Adv., 3(1), e1601755, doi: 10.1126/sciadv.1601755.

Whitmeyer, S.J., Karlstrom, K.E., 2007. Tectonic model for the Proterozoic growth of North America. Geosphere 3, 220-259.

Woodhouse, J.H. and A.M. Dziewonski. 1984. “Mapping the upper mantle: Three dimensional modeling of Earth’s structure by inversion of seismic waveforms” J. Geophys. Res. 89:5953-5986.

Wu, F. T., and H. Kuo-Chen, K. McIntosh (2014) Subsurface imaging, TAIGER experiments and tectonic models of Taiwan, J. Asian Earth Sci., doi:10.1016/j.jseaes.2014.03.024.

Yang, X., G. L. Pavlis, M. W. Hamburger, S. Marshak, H. Gilbert, J. Rupp, T. H., Larson, C. Chen, and N. S. Carpenter (2017), Detailed crustal thickness variations beneath the Illinois Basin area: Implications for crustal evolution of the midcontinent, J. Geophys. Res. Solid Earth, 122, 6323–6345, doi:10.1002/2017JB014150.

Yang, B., et al., (2015), Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data, Earth Planet. Sci. Lett., 422, 87-93. doi:10.1016/j.epsl.2015.04.006.

Yuan, H., French, S., Cupillard, P., Romanowicz, B., 2014. Lithospheric expression of geological units in central and eastern North America from full waveform tomography. Earth Planet Sc Lett. 402, 176–186, doi:10.1016/j.epsl.2013.11.057.

Yuan, H., Romanowicz, B., Fischer, K.M., Abt, D., 2011. 3-D shear wave radially and azimuthally anisotropic velocity model of the North American upper mantle. Geophys. J. Int. 184, 1237-1260.

Citations and DOIs

To cite IRIS DMC Data Products effort:

  • Trabant, C., A. R. Hutko, M. Bahavar, R. Karstens, T. Ahern, and R. Aster (2012), Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications, Seismological Research Letters, 83(5), 846–854,

To cite IRIS Earth Model Collaboration (EMC) data product or reference use of its repository:

To cite the source or reference the use of a particular Earth model hosted by EMC:





17:51:33 v.22510d55